Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nucleic Acids Res ; 50(1): 227-243, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34928327

ABSTRACT

Pseudomonas aeruginosa uses three type six secretion systems (H1-, H2- and H3-T6SS) to manipulate its environment, subvert host cells and for microbial competition. These T6SS machines are loaded with a variety of effectors/toxins, many being associated with a specific VgrG. How P. aeruginosa transcriptionally coordinates the main T6SS clusters and the multiple vgrG islands spread through the genome is unknown. Here we show an unprecedented level of control with RsmA repressing most known T6SS-related genes. Moreover, each of the H2- and H3-T6SS clusters encodes a sigma factor activator (SFA) protein called, Sfa2 and Sfa3, respectively. SFA proteins are enhancer binding proteins necessary for the sigma factor RpoN. Using a combination of RNA-seq, ChIP-seq and molecular biology approaches, we demonstrate that RpoN coordinates the T6SSs of P. aeruginosa by activating the H2-T6SS but repressing the H1- and H3-T6SS. Furthermore, RpoN and Sfa2 control the expression of the H2-T6SS-linked VgrGs and their effector arsenal to enable very effective interbacterial killing. Sfa2 is specific as Sfa3 from the H3-T6SS cannot complement loss of Sfa2. Our study further delineates the regulatory mechanisms that modulate the deployment of an arsenal of T6SS effectors likely enabling P. aeruginosa to adapt to a range of environmental conditions.


Subject(s)
Bacterial Secretion Systems/genetics , Pseudomonas aeruginosa/metabolism , RNA Polymerase Sigma 54/metabolism , Bacterial Secretion Systems/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/genetics , RNA Polymerase Sigma 54/genetics
2.
Microbiology (Reading) ; 169(7)2023 07.
Article in English | MEDLINE | ID: mdl-37490402

ABSTRACT

The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.


Subject(s)
Bacterial Proteins , Type VI Secretion Systems , Bacterial Proteins/genetics , Bacteria/genetics , Type VI Secretion Systems/genetics , Gram-Negative Bacteria/genetics , Eukaryota
3.
Adv Exp Med Biol ; 1386: 223-256, 2022.
Article in English | MEDLINE | ID: mdl-36258074

ABSTRACT

Pseudomonas aeruginosa is a robust and versatile organism capable of surviving and prospering in a diverse array of environments and is an opportunistic pathogen of humans. One reason for the success of this pathogen is the large arsenal of antimicrobial weapons that it possesses. Here we focus our attention on these antimicrobial weapons and how they give P. aeruginosa a survival edge in polymicrobial environments. We define antimicrobial weapons as components produced by P. aeruginosa that are used to kill, inhibit growth and/or subvert key cellular functions in other microbes. P. aeruginosa has a large and complex genome and encodes an armament of antimicrobial weapons that fall into two subclasses; those that are delivered directly to competing microbes using a contact-dependent method, and those that are secreted in a contact-independent manner into the environment to then be available to target neighbouring cells. This chapter provides an overview of the major antimicrobial weapons possessed by P. aeruginosa, captures recent advances in the field and discusses how these could be targeted as a therapeutic intervention, or potentially harnessed to combat infection.


Subject(s)
Anti-Infective Agents , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
4.
Cell Microbiol ; 22(3): e13153, 2020 03.
Article in English | MEDLINE | ID: mdl-31872954

ABSTRACT

Microbiota niches have space and/or nutrient restrictions, which has led to the coevolution of cooperation, specialisation, and competition within the population. Different animal and environmental niches contain defined resident microbiota that tend to be stable over time and offer protection against undesired intruders. Yet fluxes can occur, which alter the composition of a bacterial population. In humans, the microbiota are now considered a key contributor to maintenance of health and homeostasis, and its alteration leads to dysbiosis. The bacterial type VI secretion system (T6SS) transports proteins into the environment, directly into host cells or can function as an antibacterial weapon by killing surrounding competitors. Upon contact with neighbouring cells, the T6SS fires, delivering a payload of effector proteins. In the absence of an immunity protein, this results in growth inhibition or death of prey leading to a competitive advantage for the attacker. It is becoming apparent that the T6SS has a role in modulating and shaping the microbiota at multiple levels, which is the focus of this review. Discussed here is the T6SS, its role in competition, key examples of its effect upon the microbiota, and future avenues of research.


Subject(s)
Microbiota , Type VI Secretion Systems/physiology , Animals , Antibiosis , Bacterial Proteins/physiology , Homeostasis , Host Microbial Interactions , Humans
5.
Proc Natl Acad Sci U S A ; 115(49): 12519-12524, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30455305

ABSTRACT

The type VI secretion system (T6SS) is a supramolecular complex involved in the delivery of potent toxins during bacterial competition. Pseudomonas aeruginosa possesses three T6SS gene clusters and several hcp and vgrG gene islands, the latter encoding the spike at the T6SS tip. The vgrG1b cluster encompasses seven genes whose organization and sequences are highly conserved in P. aeruginosa genomes, except for two genes that we called tse7 and tsi7 We show that Tse7 is a Tox-GHH2 domain nuclease which is distinct from other T6SS nucleases identified thus far. Expression of this toxin induces the SOS response, causes growth arrest and ultimately results in DNA degradation. The cytotoxic domain of Tse7 lies at its C terminus, while the N terminus is a predicted PAAR domain. We find that Tse7 sits on the tip of the VgrG1b spike and that specific residues at the PAAR-VgrG1b interface are essential for VgrG1b-dependent delivery of Tse7 into bacterial prey. We also show that the delivery of Tse7 is dependent on the H1-T6SS cluster, and injection of the nuclease into bacterial competitors is deployed for interbacterial competition. Tsi7, the cognate immunity protein, protects the producer from the deleterious effect of Tse7 through a direct protein-protein interaction so specific that toxin/immunity pairs are effective only if they originate from the same P. aeruginosa isolate. Overall, our study highlights the diversity of T6SS effectors, the exquisite fitting of toxins on the tip of the T6SS, and the specificity in Tsi7-dependent protection, suggesting a role in interstrain competition.


Subject(s)
Bacterial Proteins/metabolism , DNA Damage/physiology , Gene Expression Regulation, Bacterial/physiology , Pseudomonas aeruginosa/metabolism , Type VI Secretion Systems/physiology , Bacterial Proteins/genetics , Models, Molecular , Protein Conformation , Protein Interaction Domains and Motifs , Pseudomonas aeruginosa/genetics
6.
Proc Natl Acad Sci U S A ; 114(29): 7707-7712, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28673999

ABSTRACT

The type VI secretion system (T6SS) is a weapon of bacterial warfare and host cell subversion. The Gram-negative pathogen Pseudomonas aeruginosa has three T6SSs involved in colonization, competition, and full virulence. H1-T6SS is a molecular gun firing seven toxins, Tse1-Tse7, challenging survival of other bacteria and helping P. aeruginosa to prevail in specific niches. The H1-T6SS characterization was facilitated through studying a P. aeruginosa strain lacking the RetS sensor, which has a fully active H1-T6SS, in contrast to the parent. However, study of H2-T6SS and H3-T6SS has been neglected because of a poor understanding of the associated regulatory network. Here we performed a screen to identify H2-T6SS and H3-T6SS regulatory elements and found that the posttranscriptional regulator RsmA imposes a concerted repression on all three T6SS clusters. A higher level of complexity could be observed as we identified a transcriptional regulator, AmrZ, which acts as a negative regulator of H2-T6SS. Overall, although the level of T6SS transcripts is fine-tuned by AmrZ, all T6SS mRNAs are silenced by RsmA. We expanded this concept of global control by RsmA to VgrG spike and T6SS toxin transcripts whose genes are scattered on the chromosome. These observations triggered the characterization of a suite of H2-T6SS toxins and their implication in direct bacterial competition. Our study thus unveils a central mechanism that modulates the deployment of all T6SS weapons that may be simultaneously produced within a single cell.


Subject(s)
Bacterial Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , Cluster Analysis , Gene Deletion , Gene Regulatory Networks , Immune System , Lac Operon , Mutagenesis , Plasmids/metabolism , RNA, Bacterial/genetics , Transcription, Genetic , Type VI Secretion Systems/genetics , Virulence/genetics
8.
PLoS Genet ; 9(10): e1003834, 2013.
Article in English | MEDLINE | ID: mdl-24098145

ABSTRACT

Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease.


Subject(s)
Blood/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Humans , Molecular Epidemiology , Mutagenesis , Uropathogenic Escherichia coli/pathogenicity , Virulence/drug effects , Virulence/genetics , beta-Lactamases/genetics
9.
J Biol Chem ; 289(25): 17872-84, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24794869

ABSTRACT

The bacterial type VI secretion system (T6SS) is a supra-molecular complex akin to bacteriophage tails, with VgrG proteins acting as a puncturing device. The Pseudomonas aeruginosa H1-T6SS has been extensively characterized. It is involved in bacterial killing and in the delivery of three toxins, Tse1-3. Here, we demonstrate the independent contribution of the three H1-T6SS co-regulated vgrG genes, vgrG1abc, to bacterial killing. A putative toxin is encoded in the vicinity of each vgrG gene, supporting the concept of specific VgrG/toxin couples. In this respect, VgrG1c is involved in the delivery of an Rhs protein, RhsP1. The RhsP1 C terminus carries a toxic activity, from which the producing bacterium is protected by a cognate immunity. Similarly, VgrG1a-dependent toxicity is associated with the PA0093 gene encoding a two-domain protein with a putative toxin domain (Toxin_61) at the C terminus. Finally, VgrG1b-dependent killing is detectable upon complementation of a triple vgrG1abc mutant. The VgrG1b-dependent killing is mediated by PA0099, which presents the characteristics of the superfamily nuclease 2 toxin members. Overall, these data develop the concept that VgrGs are indispensable components for the specific delivery of effectors. Several additional vgrG genes are encoded on the P. aeruginosa genome and are not linked genetically to other T6SS genes. A closer inspection of these clusters reveals that they also encode putative toxins. Overall, these associations further support the notion of an original form of secretion system, in which VgrG acts as the carrier.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/physiology , Bacterial Toxins/metabolism , Carrier Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Carrier Proteins/genetics , Pseudomonas aeruginosa/genetics
11.
Appl Environ Microbiol ; 80(23): 7337-47, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25239893

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a Shiga-toxigenic pathogen capable of inducing severe forms of enteritis (e.g., hemorrhagic colitis) and extraintestinal sequelae (e.g., hemolytic-uremic syndrome). The molecular basis of colonization of human and animal hosts by EHEC is not yet completely understood, and an improved understanding of EHEC mucosal adherence may lead to the development of interventions that could disrupt host colonization. FdeC, also referred to by its IHE3034 locus tag ECOK1_0290, is an intimin-like protein that was recently shown to contribute to kidney colonization in a mouse urinary tract infection model. The expression of FdeC is tightly regulated in vitro, and FdeC shows promise as a vaccine candidate against extraintestinal E. coli strains. In this study, we characterized the prevalence, regulation, and function of fdeC in EHEC. We showed that the fdeC gene is conserved in both O157 and non-O157 EHEC and encodes a protein that is expressed at the cell surface and promotes biofilm formation under continuous-flow conditions in a recombinant E. coli strain background. We also identified culture conditions under which FdeC is expressed and showed that minor alterations of these conditions, such as changes in temperature, can significantly alter the level of FdeC expression. Additionally, we demonstrated that the transcription of the fdeC gene is repressed by the global regulator H-NS. Taken together, our data suggest a role for FdeC in EHEC when it grows at temperatures above 37°C, a condition relevant to its specialized niche at the rectoanal junctions of cattle.


Subject(s)
Adhesins, Escherichia coli/biosynthesis , Bacterial Proteins/metabolism , Biofilms/growth & development , DNA-Binding Proteins/metabolism , Enterohemorrhagic Escherichia coli/metabolism , Enterohemorrhagic Escherichia coli/radiation effects , Gene Expression Regulation, Bacterial/radiation effects , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/physiology , Gene Expression Profiling , Temperature
12.
mBio ; 15(3): e0338823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38353545

ABSTRACT

Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Escherichia coli/genetics , Fluorides/metabolism , Lipopolysaccharides/metabolism , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Genomics , Nucleotides/metabolism , Lactates/metabolism , Uropathogenic Escherichia coli/genetics
13.
J Bacteriol ; 194(21): 5769-82, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22904291

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTI). To cause a UTI, UPEC must adhere to the epithelial cells of the urinary tract and overcome the shear flow forces of urine. This function is mediated primarily by fimbrial adhesins, which mediate specific attachment to host cell receptors. Another group of adhesins that contributes to UPEC-mediated UTI is autotransporter (AT) proteins. AT proteins possess a range of virulence properties, such as adherence, aggregation, invasion, and biofilm formation. One recently characterized AT protein of UPEC is UpaH, a large adhesin-involved-in-diffuse-adherence (AIDA-I)-type AT protein that contributes to biofilm formation and bladder colonization. In this study we characterized a series of naturally occurring variants of UpaH. We demonstrate that extensive sequence variation exists within the passenger-encoding domain of UpaH variants from different UPEC strains. This sequence variation is associated with functional heterogeneity with respect to the ability of UpaH to mediate biofilm formation. In contrast, all of the UpaH variants examined retained a conserved ability to mediate binding to extracellular matrix (ECM) proteins. Bioinformatic analysis of the UpaH passenger domain identified a conserved region (UpaH(CR)) and a hydrophobic region (UpaH(HR)). Deletion of these domains reduced biofilm formation but not the binding to ECM proteins. Despite variation in the upaH sequence, the transcription of upaH was repressed by a conserved mechanism involving the global regulator H-NS, and mutation of the hns gene relieved this repression. Overall, our findings shed new light on the regulation and functions of the UpaH AT protein.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genetic Variation , Uropathogenic Escherichia coli/enzymology , Uropathogenic Escherichia coli/physiology , Virulence Factors/genetics , Virulence Factors/metabolism , Bacterial Adhesion , Biofilms/growth & development , Computational Biology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Extracellular Matrix Proteins/metabolism , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Sequence Analysis, DNA , Sequence Deletion , Uropathogenic Escherichia coli/genetics
14.
Infect Immun ; 80(1): 321-32, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21930758

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of UPEC are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. The genome-sequenced prototype UPEC strain CFT073 contains 11 putative AT-encoding genes. In this study, we have performed a detailed molecular characterization of two closely related AT adhesins from CFT073: UpaB (c0426) and UpaC (c0478). PCR screening revealed that the upaB and upaC AT-encoding genes are common in E. coli. The upaB and upaC genes were cloned and characterized in a recombinant E. coli K-12 strain background. This revealed that they encode proteins located at the cell surface but possess different functional properties: UpaB mediates adherence to several ECM proteins, while UpaC expression is associated with increased biofilm formation. In CFT073, upaB is expressed while upaC is transcriptionally repressed by the global regulator H-NS. In competitive colonization experiments employing the mouse UTI model, CFT073 significantly outcompeted its upaB (but not upaC) isogenic mutant strain in the bladder. This attenuated phenotype was also observed in single-challenge experiments, where deletion of the upaB gene in CFT073 significantly reduced early colonization of the bladder.


Subject(s)
Adhesins, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/metabolism , Adhesins, Bacterial/genetics , Animals , Biofilms/growth & development , Cloning, Molecular , DNA, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli K12/genetics , Escherichia coli K12/pathogenicity , Escherichia coli Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Fimbriae Proteins/metabolism , Gene Expression Profiling , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Virulence Factors/genetics
15.
Appl Environ Microbiol ; 78(7): 2179-89, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22286983

ABSTRACT

Trimeric autotransporter proteins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. A common feature of most TAAs is the ability to mediate adherence to eukaryotic cells or extracellular matrix (ECM) proteins via a cell surface-exposed passenger domain. Here we describe the characterization of EhaG, a TAA identified from enterohemorrhagic Escherichia coli (EHEC) O157:H7. EhaG is a positional orthologue of the recently characterized UpaG TAA from uropathogenic E. coli (UPEC). Similarly to UpaG, EhaG localized at the bacterial cell surface and promoted cell aggregation, biofilm formation, and adherence to a range of ECM proteins. However, the two orthologues display differential cellular binding: EhaG mediates specific adhesion to colorectal epithelial cells while UpaG promotes specific binding to bladder epithelial cells. The EhaG and UpaG TAAs contain extensive sequence divergence in their respective passenger domains that could account for these differences. Indeed, sequence analyses of UpaG and EhaG homologues from several E. coli genomes revealed grouping of the proteins in clades almost exclusively represented by distinct E. coli pathotypes. The expression of EhaG (in EHEC) and UpaG (in UPEC) was also investigated and shown to be significantly enhanced in an hns isogenic mutant, suggesting that H-NS acts as a negative regulator of both TAAs. Thus, while the EhaG and UpaG TAAs contain some conserved binding and regulatory features, they also possess important differences that correlate with the distinct pathogenic lifestyles of EHEC and UPEC.


Subject(s)
Adhesins, Escherichia coli/genetics , Biofilms/growth & development , Epithelial Cells/microbiology , Escherichia coli O157/pathogenicity , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/genetics , Adhesins, Escherichia coli/metabolism , Amino Acid Sequence , Bacterial Adhesion , Caco-2 Cells , Cell Line, Tumor , Colon/cytology , Colon/microbiology , Epithelial Cells/metabolism , Escherichia coli Infections/microbiology , Escherichia coli O157/genetics , Escherichia coli O157/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Extracellular Matrix/metabolism , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Molecular Sequence Data , Rectum/cytology , Rectum/microbiology , Sequence Analysis, DNA , Urinary Bladder/cytology , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Virulence Factors/metabolism
16.
Front Microbiol ; 13: 1042505, 2022.
Article in English | MEDLINE | ID: mdl-36687572

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen and a major driver of morbidity and mortality in people with Cystic Fibrosis (CF). The Type VI secretion system (T6SS) is a molecular nanomachine that translocates effectors across the bacterial membrane into target cells or the extracellular environment enabling intermicrobial interaction. P. aeruginosa encodes three T6SS clusters, the H1-, H2- and H3-T6SS, and numerous orphan islands. Genetic diversity of T6SS-associated effectors in P. aeruginosa has been noted in reference strains but has yet to be explored in clinical isolates. Here, we perform a comprehensive bioinformatic analysis of the pangenome and T6SS effector genes in 52 high-quality clinical P. aeruginosa genomes isolated from CF patients and housed in the Personalised Approach to P. aeruginosa strain repository. We confirm that the clinical CF isolate pangenome is open and principally made up of accessory and unique genes that may provide strain-specific advantages. We observed genetic variability in some effector/immunity encoding genes and show that several well-characterised vgrG and PAAR islands are absent from numerous isolates. Our analysis shows clear evidence of disruption to T6SS genomic loci through transposon, prophage, and mobile genetic element insertions. We identified an orphan vgrG island in P. aeruginosa strain PAK and five clinical isolates using in silico analysis which we denote vgrG7, predicting a gene within this cluster to encode a Tle2 lipase family effector. Close comparison of T6SS loci in clinical isolates compared to reference P. aeruginosa strain PAO1 revealed the presence of genes encoding eight new T6SS effectors with the following putative functions: cytidine deaminase, lipase, metallopeptidase, NADase, and pyocin. Finally, the prevalence of characterised and putative T6SS effectors were assessed in 532 publicly available P. aeruginosa genomes, which suggests the existence of accessory effectors. Our in silico study of the P. aeruginosa T6SS exposes a level of genetic diversity at T6SS genomic loci not seen to date within P. aeruginosa, particularly in CF isolates. As understanding the effector repertoire is key to identifying the targets of T6SSs and its efficacy, this comprehensive analysis provides a path for future experimental characterisation of these mediators of intermicrobial competition and host manipulation.

17.
Sci Adv ; 8(7): eabl5966, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35171679

ABSTRACT

The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F1Fo-adenosine 5'-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states. The nucleotide-converting F1 subcomplex reveals a specific self-inhibition mechanism, which supports a unidirectional ratchet mechanism to avoid wasteful ATP consumption. In the membrane-embedded Fo complex, the structure shows unique structural adaptations along both the entry and exit pathways of the proton-conducting a-subunit. These features, absent in mitochondrial ATP synthases, represent attractive targets for the development of next-generation therapeutics that can act directly at the culmination of bioenergetics in this clinically relevant pathogen.


Subject(s)
Acinetobacter baumannii , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy
18.
mBio ; 13(1): e0351921, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35038925

ABSTRACT

Many antibiotic resistant uropathogenic Escherichia coli (UPEC) strains belong to clones defined by their multilocus sequence type (ST), with ST131 being the most dominant. Although we have a good understanding of resistance development to fluoroquinolones and third-generation cephalosporins by ST131, our understanding of the virulence repertoire that has contributed to its global dissemination is limited. Here we show that the genes encoding Afa/Dr fimbriae, a group of adhesins strongly associated with UPEC that cause gestational pyelonephritis and recurrent cystitis, are found in approximately one third of all ST131 strains. Sequence comparison of the AfaE adhesin protein revealed a unique allelic variant carried by 82.9% of afa-positive ST131 strains. We identify the afa regulatory region as a hotspot for the integration of insertion sequence (IS) elements, all but one of which alter afa transcription. Close investigation demonstrated that the integration of an IS1 element in the afa regulatory region leads to increased expression of Afa/Dr fimbriae, promoting enhanced adhesion to kidney epithelial cells and suggesting a mechanism for altered virulence. Finally, we provide evidence for a more widespread impact of IS1 on ST131 genome evolution, suggesting that IS dynamics contribute to strain level microevolution that impacts ST131 fitness. IMPORTANCE E. coli ST131 is the most common antibiotic resistant UPEC clone associated with human urinary tract and bloodstream infections. Understanding the features of ST131 that have driven its global dissemination remains a critical priority if we are to counter its increasing antibiotic resistance. Here, we utilized a large collection of ST131 isolates to investigate the prevalence, regulation, and function of Afa/Dr fimbriae, a well-characterized UPEC colonization and virulence factor. We show that the afa genes are found frequently in ST131 and demonstrate how the integration of IS elements in the afa regulatory region modulates Afa expression, presenting an example of altered virulence capacity. We also exploit a curated set of ST131 genomes to map the integration of the antibiotic resistance-associated IS1 element in the ST131 pangenome, providing evidence for its widespread impact on ST131 genome evolution.


Subject(s)
Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Adhesins, Bacterial/metabolism , Anti-Bacterial Agents/metabolism , Clone Cells , DNA Transposable Elements , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/genetics , Urinary Tract Infections/genetics , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Virulence/genetics
19.
Infect Immun ; 78(4): 1659-69, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20145097

ABSTRACT

Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. In this study, we identified a new AT-encoding gene, termed upaH, present in a 6.5-kb unannotated intergenic region in the genome of the prototypic UPEC strain CFT073. Cloning and sequencing of the upaH gene from CFT073 revealed an intact 8.535-kb coding region, contrary to the published genome sequence. The upaH gene was widely distributed among a large collection of UPEC isolates as well as the E. coli Reference (ECOR) strain collection. Bioinformatic analyses suggest beta-helix as the predominant structure in the large N-terminal passenger (alpha) domain and a 12-strand beta-barrel for the C-terminal beta-domain of UpaH. We demonstrated that UpaH is expressed at the cell surface of CFT073 and promotes biofilm formation. In the mouse UTI model, deletion of the upaH gene in CFT073 and in two other UPEC strains did not significantly affect colonization of the bladder in single-challenge experiments. However, in competitive colonization experiments, CFT073 significantly outcompeted its upaH isogenic mutant strain in urine and the bladder.


Subject(s)
Biofilms/growth & development , Escherichia coli Proteins/physiology , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/physiology , Animals , Cloning, Molecular , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Disease Models, Animal , Escherichia coli Proteins/genetics , Female , Gene Deletion , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Analysis, DNA , Urinary Tract Infections/microbiology , Virulence Factors/genetics
20.
Environ Microbiol ; 10(3): 589-604, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18237301

ABSTRACT

Autotransporter (AT) proteins have been identified in many Gram-negative pathogens and are unique in that their primary sequence is sufficient to direct their transport across the bacterial membrane system. Where characterized they are uniformly associated with virulence. Using conserved AT motifs as a search tool, four putative AT proteins were identified in the Enterohemorrhagic Escherichia coli O157:H7 EDL933 genome. The genes encoding these proteins (z0402/ehaA, z0469/ehaB, z3487/ehaC and z3948/ehaD) were PCR amplified, cloned and expressed in an E. coli K-12 MG1655flu background. Preliminary characterization revealed that ehaA, ehaB and ehaD encode proteins associated with increased biofilm formation. One of these genes (ehaA) resides on a genomic island in E. coli O157:H7 strains EDL933 and Sakai. Over-expression of EhaA in E. coli K-12 demonstrated it is located at the cell surface and resulted in the formation of large cell aggregates, promoted significant biofilm formation and mediated adhesion to primary epithelial cells of the bovine terminal rectum. The expression of ehaA was demonstrated in E. coli EDL933 by RT-PCR. An EhaA-specific antibody revealed the EhaA protein was expressed in 24/50 generic Shiga toxin-producing E. coli (STEC) strains of various serotypes including O157:H7. However, the deletion of ehaA from E. coli EDL933 and a STEC strain from serotype O111:H(-) did not affect biofilm growth. Our results suggest that EhaA may contribute to adhesion, colonization and biofilm formation by E. coli O157:H7 and possibly other STEC serotypes.


Subject(s)
Adhesins, Escherichia coli/metabolism , Bacterial Adhesion/genetics , Biofilms/growth & development , Escherichia coli O157/physiology , Protein Transport , Adhesins, Escherichia coli/chemistry , Escherichia coli O157/genetics , Escherichia coli Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL