Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
Int J Equity Health ; 15: 69, 2016 Apr 23.
Article in English | MEDLINE | ID: mdl-27108224

ABSTRACT

BACKGROUND: Early detection of emergent influenza strains is a global health priority. However, maintaining active surveillance is economically and logistically challenging. While community-based surveillance is an attractive alternative, design and operation of an effective epidemiological surveillance program requires community engagement that can be linked to public health reporting and response. We report the results of a study in rural Guatemalan communities aimed at identifying opportunities for and barriers to community engagement in disease surveillance. METHODS: Using an ethnographic approach followed by a descriptive cross-sectional survey, we documented local terms and ideas about animal illnesses, including the possibility of animal-human transmission. RESULTS: The community perceived disease causation principally in terms of changes in the physical environment and weather and categorized illnesses using local terminology based on observable clinical signs. Knowledge about prevention and treatment was derived predominantly from local networks of family and friends without evidence of professionally-based knowledge being regularly introduced into the community. CONCLUSIONS: Bridging the divide between professional and community-based descriptive disease terminology, incorporating animal and human health responsiveness to common illnesses, and providing professional knowledge into the community-based networks were identified as addressable challenges to effective implementation of community-based surveillance.


Subject(s)
Community Networks/trends , Influenza, Human/epidemiology , Population Surveillance/methods , Cross-Sectional Studies , Guatemala/epidemiology , Humans , Rural Population/statistics & numerical data
2.
J Gen Virol ; 94(Pt 4): 738-748, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23239573

ABSTRACT

Polyomaviruses (PyVs) have been identified in a wide range of avian and mammalian species. However, little is known about their occurrence, genetic diversity and evolutionary history in bats, even though bats are important reservoirs for many emerging viral pathogens. This study screened 380 specimens from 35 bat species from Kenya and Guatemala for the presence of PyVs by semi-nested pan-PyV PCR assays. PyV DNA was detected in 24 of the 380 bat specimens. Phylogenetic analysis revealed that the bat PyV sequences formed 12 distinct lineages. Full-genome sequences were obtained for seven representative lineages and possessed similar genomic features to known PyVs. Strikingly, this evolutionary analysis revealed that the bat PyVs were paraphyletic, suggestive of multiple species jumps between bats and other mammalian species, such that the theory of virus-host co-divergence for mammalian PyVs as a whole could be rejected. In addition, evidence was found for strong heterogeneity in evolutionary rate and potential recombination in a number of PyV complete genomes, which complicates both phylogenetic analysis and virus classification. In summary, this study revealed that bats are important reservoirs of PyVs and that these viruses have a complex evolutionary history.


Subject(s)
Chiroptera/virology , DNA, Viral/genetics , Evolution, Molecular , Genetic Variation , Genome, Viral , Polyomavirus/genetics , Polyomavirus/isolation & purification , Animals , Cluster Analysis , DNA, Viral/chemistry , Guatemala , Kenya , Molecular Sequence Data , Phylogeny , Polyomavirus/classification , Sequence Analysis, DNA
3.
Microbiol Spectr ; 11(1): e0287822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36475876

ABSTRACT

Commercial swine farms provide unique systems for interspecies transmission of influenza A viruses (FLUAVs) at the animal-human interface. Bidirectional transmission of FLUAVs between pigs and humans plays a significant role in the generation of novel strains that become established in the new host population. Active FLUAV surveillance was conducted for 2 years on a commercial pig farm in Southern Guatemala with no history of FLUAV vaccination. Nasal swabs (n = 2,094) from fattening pigs (6 to 24 weeks old) with respiratory signs were collected weekly from May 2016 to February 2018. Swabs were screened for FLUAV by real-time reverse transcriptase PCR (RRT-PCR), and full virus genomes of FLUAV-positive swabs were sequenced by next-generation sequencing (NGS). FLUAV prevalence was 12.0% (95% confidence interval [CI], 10.6% to 13.4%) with two distinct periods of high infection. All samples were identified as FLUAVs of the H1N1 subtype within the H1 swine clade 1A.3.3.2 and whose ancestors are the human origin 2009 H1N1 influenza pandemic virus (H1N1 pdm09). Compared to the prototypic reference segment sequence, 10 amino acid signatures were observed on relevant antigenic sites on the hemagglutinin. The Guatemalan swine-origin FLUAVs show independent evolution from other H1N1 pdm09 FLUAVs circulating in Central America. The zoonotic risk of these viruses remains unknown but strongly calls for continued FLUAV surveillance in pigs in Guatemala. IMPORTANCE Despite increased surveillance efforts, the epidemiology of FLUAVs circulating in swine in Latin America remains understudied. For instance, the 2009 H1N1 influenza pandemic strain (H1N1 pdm09) emerged in Mexico, but its circulation remained undetected in pigs. In Central America, Guatemala is the country with the largest swine industry. We found a unique group of H1N1 pdm09 sequences that suggests independent evolution from similar viruses circulating in Central America. These viruses may represent the establishment of a novel genetic lineage with the potential to reassort with other cocirculating viruses and whose zoonotic risk remains to be determined.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Swine , Humans , Animals , Influenza A virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Farms , Guatemala/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Swine Diseases/epidemiology , Phylogeny
4.
Viruses ; 15(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36851697

ABSTRACT

Wild aquatic birds are considered the natural hosts of 16 HA (H1-H16) and 9 NA (N1-N9) subtypes of influenza A viruses (FLUAV) found in different combinations. H14 FLUAVs are rarely detected in nature. Since 2011, H14 FLUAVs have been consistently detected in Guatemala, leading to the largest collection of this subtype from a single country. All H14 FLUAVs in Guatemala were detected from blue-winged teal samples. In this report, 17 new full-length H14 FLUAV genome sequences detected from 2014 until 2019 were analyzed and compared to all published H14 sequences, including Guatemala, North America, and Eurasia. The H14 FLUAVs identified in Guatemala were mostly associated with the N3 subtype (n = 25), whereas the rest were paired with either N4 (n = 7), N5 (n = 4), N6 (n = 1), and two mixed infections (N3/N5 n = 2, and N2/N3 n = 1). H14 FLUAVs in Guatemala belong to a distinct H14 lineage in the Americas that is evolving independently from the Eurasian H14 lineage. Of note, the ORF of the H14 HA segments showed three distinct motifs at the cleavage site, two of these containing arginine instead of lysine in the first and fourth positions, not previously described in other countries. The effects of these mutations on virus replication, virulence, and/or transmission remain unknown and warrant further studies.


Subject(s)
Ducks , Influenza A virus , Animals , Guatemala , Ecology , Arginine , Influenza A virus/genetics
5.
Sci Rep ; 13(1): 22750, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38123585

ABSTRACT

Free-roaming domestic dogs (FRDD), as vectors of zoonotic diseases, are of high relevance for public health. Understanding roaming patterns of dogs can help to design disease control programs and disease transmission simulation models. Studies on GPS tracking of dogs report stark differences in recording periods. So far, there is no accepted number of days required to capture a representative home range (HR) of FRDD. The objective of this study was to evaluate changes in HR size and shape over time of FRDD living in Chad, Guatemala, Indonesia and Uganda and identify the period required to capture stable HR values. Dogs were collared with GPS units, leading to a total of 46 datasets with, at least, 19 recorded days. For each animal and recorded day, HR sizes were estimated using the Biased Random Bridge method and percentages of daily change in size and shape calculated and taken as metrics. The analysis revealed that the required number of days differed substantially between individuals, isopleths, and countries, with the extended HR (95% isopleth value) requiring a longer recording period. To reach a stable HR size and shape values for 75% of the dogs, 26 and 21 days, respectively, were sufficient. However, certain dogs required more extended observational periods.


Subject(s)
Homing Behavior , Public Health , Animals , Dogs , Indonesia , Guatemala , Chad
6.
Sci Rep ; 12(1): 20928, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463285

ABSTRACT

Domestic dogs can affect human health through bites and pathogen transmission, particularly in resource-poor countries where dogs, including owned ones, predominantly roam freely. Habitat and resource selection analysis methods are commonplace in wildlife studies but have not been used to investigate the environmental resource use of free-roaming domestic dogs (FRDD). The present study implements GPS devices to investigate habitat selection by FRDD from an urban site and a rural site in Indonesia, and one urban and two rural sites in Guatemala (N = 321 dogs). Spatial mixed effects logistic regression models, accounting for heterogeneous distribution of the resources, showed that patterns of habitat selection by FRDD were similar across study sites. The most preferred resources were anthropogenic, being buildings and roads, which implies selection for human proximity. Vegetation and open fields were less preferred and steep terrain was avoided, indicating that FRDD were synanthropic and that their space patterns likely optimised energy use. Results presented here provide novel data on FRDD habitat selection patterns, while improving our understanding of dog roaming behaviour. These findings provide insights into possible high-risk locations for pathogen transmission for diseases such as rabies, and can assist management authorities in the planning and deployment of efficient disease control campaigns, including oral vaccination.


Subject(s)
Rabies , Humans , Dogs , Animals , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Animals, Wild , Guatemala/epidemiology , Indonesia , Ecosystem
7.
PLoS Negl Trop Dis ; 16(7): e0010522, 2022 07.
Article in English | MEDLINE | ID: mdl-35797418

ABSTRACT

Guatemala has held dog rabies mass vaccination campaigns countrywide since 1984, yet the virus remains endemic. To eliminate dog-mediated human rabies, dog vaccination coverage must reach at least 70%. The Guatemala rabies program uses a 5:1 human:dog ratio (HDR) to estimate the vaccination coverage; however, this method may not accurately reflect the heterogeneity of dog ownership practices in Guatemalan communities. We conducted 16 field-based dog population estimates in urban, semi-urban and rural areas of Guatemala to determine HDR and evaluate the standard 5:1. Our study-derived HDR estimates varied from 1.7-11.4:1 (average 4.0:1), being higher in densely populated sites and lowest in rural communities. The community-to-community heterogeneity observed in dog populations could explain the persistence of rabies in certain communities. To date, this is the most extensive dog-population evaluation conducted in Guatemala, and can be used to inform future rabies vaccination campaigns needed to meet the global 2030 rabies elimination targets.


Subject(s)
Dog Diseases , Rabies Vaccines , Rabies , Animals , Dog Diseases/epidemiology , Dog Diseases/prevention & control , Dogs , Guatemala/epidemiology , Humans , Ownership , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Vaccination/methods , Vaccination/veterinary
8.
Zoonoses Public Health ; 69(7): 826-834, 2022 11.
Article in English | MEDLINE | ID: mdl-35611690

ABSTRACT

Due to their documented epidemiological relevance as hosts for influenza A viruses (IAV), humans, poultry and pigs in backyard production systems (BPS) within wetlands could be key to the emergence of novel IAV variants able to transmit between humans or animals. To better understand the circulation of IAV at the human-animal interface of BPS within wetlands, we studied IAV in backyard duck flocks and pig herds in the Pacific Coast of Guatemala. From April 2013 to October 2014, we estimated the monthly IAV per cent seropositive and viral positive flocks and herds in two resource-limited communities. We detected antibodies in sera against the IAV nucleoprotein through ELISA. We also detected IAV viral RNA in respiratory (ducks and pigs) and cloacal (ducks) swabs through rRT-PCR directed at the matrix gene. We attempted viral isolation in eggs or MDCK cells followed by sequencing from swabs positive for IAV. During our study period, IAV seropositivity in duck flocks was 38%, and viral positivity was 23% (n = 86 BPS sampled). IAV seropositivity in pig herds was 42%, and viral positivity was 20% (n = 90 BPS sampled). Both flocks and herds had detectable antibodies against IAV mostly year-round, and IAV was detected in several months. We isolated an H3N2 virus from one pig sampled at the end of 2013. Standard nucleotide BLAST searches indicate that the isolated virus was similar to seasonal viruses circulating in humans, suggesting human-to-pig transmission. Our data show concurrent circulation of IAV in multiple species of poultry and pigs that were commingled in rudimentary conditions in proximity to humans, but no significant risk factors could be identified.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Swine Diseases , Animals , Ducks , Guatemala/epidemiology , Humans , Influenza A Virus, H3N2 Subtype/genetics , Nucleoproteins , Nucleotides , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Ovum , Poultry , RNA, Viral/genetics , Swine
10.
Am J Trop Med Hyg ; 105(1): 12-17, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33939640

ABSTRACT

The presence of intestinal pathogenic Escherichia coli in drinking water is well recognized as a risk for diarrhea. The role of drinking water in extraintestinal infections caused by E. coli-such as urinary tract infections (UTIs)-remains poorly understood. Urinary tract infections are a leading cause of outpatient infections globally, with a lifetime incidence of 50-60% in adult women. We reviewed the scientific literature on the occurrence of uropathogenic E. coli (UPEC) in water supplies to determine whether the waterborne route may be an important, overlooked, source of UPEC. A limited number of studies have assessed whether UPEC isolates are present in drinking water supplies, but no studies have measured whether their presence in water may increase UPEC colonization or the risk of UTIs in humans. Given the prevalence of drinking water supplies contaminated with E. coli across the globe, efforts should be made to characterize UTI-related risks associated with drinking water, as well as other pathways of exposure.


Subject(s)
Drinking Water/microbiology , Urinary Tract Infections/diagnosis , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/isolation & purification , Uropathogenic Escherichia coli/pathogenicity , Waterborne Diseases/diagnosis , Waterborne Diseases/pathology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Urinary Tract Infections/epidemiology , Waterborne Diseases/epidemiology
11.
One Health ; 13: 100336, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34703874

ABSTRACT

Most human and animal disease notification systems are unintegrated and passive, resulting in underreporting. Active surveillance can complement passive efforts, but because they are resource-intensive, their attributes must be evaluated. We assessed the sensitivity and representativeness of One-Health surveillance conducted at health facilities compared to health facilities plus monthly household visits in three rural communities of Guatemala. From September 2017 to November 2018, we screened humans for acute diarrheal, febrile and respiratory infectious syndromes and canines, swine, equines and bovines for syndromic events or deaths. We estimated the relative sensitivity as the incidence rate ratio of detecting an event in health facility surveillance compared to household surveillance from Poisson models. We used interaction terms between the surveillance method and sociodemographic factors or time trends to assess effect modification as a measure of relative representativeness. We used generalized additive models with smoothing splines to model incidence over time by surveillance method. We randomized 216 households to health facility surveillance and 198 to health facility surveillance plus monthly household visits. Health facility surveillance alone was less sensitive than when combined with household surveillance by 0.42 (95% CI: 0.34, 0.53), 0.56 (95% CI: 0.39, 0.79), 0.02 (95% CI: 0.00, 0.10), 0.28 (95% CI: 0.15, 0.50) and 0.22 (95% CI: 0.03, 0.92) times for human acute infections, human severe acute infections, and deaths in canines, swine and equines, respectively. Health facility surveillance alone underrepresented Spanish speakers (interaction p-value = 0.0003) and persons in higher economic assets (interaction p-values = 0.0008). The trend in incidence over time was different between the two study groups, with a larger decrease in the group with household surveillance (all interaction p-values <0.10). Surveillance at health facilities under ascertains syndromes in humans and animals which leads to underestimation of the burden of zoonotic disease. The magnitude of under ascertainment was differentially by sociodemographic factors, yielding an unrepresentative sample of health events. However, it is less time-intensive, thus might be sustained over time longer than household surveillance. The choice between methodologies should be evaluated against surveillance goals and available resources.

12.
Sci Rep ; 11(1): 12898, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145344

ABSTRACT

Free roaming domestic dogs (FRDD) are the main vectors for rabies transmission to humans worldwide. To eradicate rabies from a dog population, current recommendations focus on random vaccination with at least 70% coverage. Studies suggest that targeting high-risk subpopulations could reduce the required vaccination coverage, and increase the likelihood of success of elimination campaigns. The centrality of a dog in a contact network can be used as a measure of its potential contribution to disease transmission. Our objectives were to investigate social networks of FRDD in eleven study sites in Chad, Guatemala, Indonesia and Uganda, and to identify characteristics of dogs, and their owners, associated with their centrality in the networks. In all study sites, networks had small-world properties and right-skewed degree distributions, suggesting that vaccinating highly connected dogs would be more effective than random vaccination. Dogs were more connected in rural than urban settings, and the likelihood of contacts was negatively correlated with the distance between dogs' households. While heterogeneity in dog's connectedness was observed in all networks, factors predicting centrality and likelihood of contacts varied across networks and countries. We therefore hypothesize that the investigated dog and owner characteristics resulted in different contact patterns depending on the social, cultural and economic context. We suggest to invest into understanding of the sociocultural structures impacting dog ownership and thus driving dog ecology, a requirement to assess the potential of targeted vaccination in dog populations.


Subject(s)
Contact Tracing , Rabies/epidemiology , Rabies/prevention & control , Animals , Disease Vectors , Dog Diseases/virology , Dogs , Humans , Public Health Surveillance , Rabies/transmission , Risk Factors , Sentinel Surveillance
13.
Front Vet Sci ; 8: 617900, 2021.
Article in English | MEDLINE | ID: mdl-33748208

ABSTRACT

Dogs play a major role in public health because of potential transmission of zoonotic diseases, such as rabies. Dog roaming behavior has been studied worldwide, including countries in Asia, Latin America, and Oceania, while studies on dog roaming behavior are lacking in Africa. Many of those studies investigated potential drivers for roaming, which could be used to refine disease control measures. However, it appears that results are often contradictory between countries, which could be caused by differences in study design or the influence of context-specific factors. Comparative studies on dog roaming behavior are needed to better understand domestic dog roaming behavior and address these discrepancies. The aim of this study was to investigate dog demography, management, and roaming behavior across four countries: Chad, Guatemala, Indonesia, and Uganda. We equipped 773 dogs with georeferenced contact sensors (106 in Chad, 303 in Guatemala, 217 in Indonesia, and 149 in Uganda) and interviewed the owners to collect information about the dog [e.g., sex, age, body condition score (BCS)] and its management (e.g., role of the dog, origin of the dog, owner-mediated transportation, confinement, vaccination, and feeding practices). Dog home range was computed using the biased random bridge method, and the core and extended home range sizes were considered. Using an AIC-based approach to select variables, country-specific linear models were developed to identify potential predictors for roaming. We highlighted similarities and differences in term of demography, dog management, and roaming behavior between countries. The median of the core home range size was 0.30 ha (95% range: 0.17-0.92 ha) in Chad, 0.33 ha (0.17-1.1 ha) in Guatemala, 0.30 ha (0.20-0.61 ha) in Indonesia, and 0.25 ha (0.15-0.72 ha) in Uganda. The median of the extended home range size was 7.7 ha (95% range: 1.1-103 ha) in Chad, 5.7 ha (1.5-27.5 ha) in Guatemala, 5.6 ha (1.6-26.5 ha) in Indonesia, and 5.7 ha (1.3-19.1 ha) in Uganda. Factors having a significant impact on the home range size in some of the countries included being male dog (positively), being younger than one year (negatively), being older than 6 years (negatively), having a low or a high BCS (negatively), being a hunting dog (positively), being a shepherd dog (positively), and time when the dog was not supervised or restricted (positively). However, the same outcome could have an impact in a country and no impact in another. We suggest that dog roaming behavior is complex and is closely related to the owner's socioeconomic context and transportation habits and the local environment. Free-roaming domestic dogs are not completely under human control but, contrary to wildlife, they strongly depend upon humans. This particular dog-human bound has to be better understood to explain their behavior and deal with free-roaming domestic dogs related issues.

14.
Article in English | MEDLINE | ID: mdl-33086731

ABSTRACT

Community-acquired antimicrobial resistant Enterobacteriaceae (CA-ARE) are an increasingly important issue around the world. Characterizing the distribution of regionally specific patterns of resistance is important to contextualize and develop locally relevant interventions. This systematic review adopts a One Health framework considering the health of humans, animals, and the environment to describe CA-ARE in Central America. Twenty studies were identified that focused on antimicrobial resistance (AMR) in Enterobacteriaceae. Studies on CA-ARE in Central America characterized resistance from diverse sources, including humans (n = 12), animals (n = 4), the environment (n = 2), and combinations of these categories (n = 2). A limited number of studies assessed prevalence of clinically important AMR, including carbapenem resistance (n = 3), third generation cephalosporin resistance (n = 7), colistin resistance (n = 2), extended spectrum beta-lactamase (ESBL) production (n = 4), or multidrug resistance (n = 4). This review highlights significant gaps in our current understanding of CA-ARE in Central America, most notably a general dearth of research, which requires increased investment and research on CA-ARE as well as AMR more broadly.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterobacteriaceae Infections , Enterobacteriaceae , One Health , Anti-Bacterial Agents/therapeutic use , Central America/epidemiology , Enterobacteriaceae/drug effects , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/epidemiology , Humans , beta-Lactamases
15.
J Parasitol ; 106(3): 341-345, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32227228

ABSTRACT

Rodents are reservoirs and hosts of several pathogens around the world, including zoonotic parasite species. This study aimed to determine the occurrence of zoonotic gastrointestinal helminths in rodents captured inside households in a rural community from southern Guatemala. Sixty-nine rodents were captured in 33% (49/148) of the surveyed households, including Rattus rattus, Rattus norvegicus, Mus musculus, and Sigmodon hispidus. Thirty-six percent (25/69) of these rodents (3 Rattus and 22 Mus musculus), from 45% (22/49) of the households, were parasitized with at least 1 gastrointestinal helminth species. Helminths from 6 species were identified: Hymenolepis diminuta, Moniliformis moniliformis, Heterakis spumosa, Nippostrongylus sp., Strongyloides sp., and Syphacia sp. Two zoonotic species were found in Rattus, H. diminuta in R. rattus (1/6), and M. moniliformis in R. norvegicus (1/1). Coinfection with other non-zoonotic helminth parasites, such as He. spumosa and Strongyloides sp., also was observed in the Rattus genus. Mus musculus had only non-zoonotic helminths: He. spumosa, Nippostrongylus sp., and Syphacia sp. being the most common, and He. spumosa (96%) followed by Nippostrongylus sp. (48%), with a higher presence in males than females, with a similar proportion in adult and young individuals. This is the first report of zoonotic and non-zoonotic helminths parasites in rodents from Guatemala.


Subject(s)
Helminthiasis, Animal/parasitology , Mice/parasitology , Rats/parasitology , Rodent Diseases/parasitology , Zoonoses/parasitology , Animals , Disease Reservoirs/parasitology , Family Characteristics , Female , Guatemala/epidemiology , Helminthiasis, Animal/epidemiology , Humans , Male , Rodent Diseases/epidemiology , Rural Population
16.
PLoS One ; 15(4): e0225022, 2020.
Article in English | MEDLINE | ID: mdl-32267848

ABSTRACT

Population size estimation is performed for several reasons including disease surveillance and control, for example to design adequate control strategies such as vaccination programs or to estimate a vaccination campaign coverage. In this study, we aimed at investigating the possibility of using Unmanned Aerial Vehicles (UAV) to estimate the size of free-roaming domestic dog (FRDD) populations and compare the results with two regularly used methods for population estimations: foot-patrol transect survey and the human: dog ratio estimation. Three studies sites of one square kilometer were selected in Petén department, Guatemala. A door-to-door survey was conducted in which all available dogs were marked with a collar and owner were interviewed. The day after, UAV flight were performed twice during two consecutive days per study site. The UAV's camera was set to regularly take pictures and cover the entire surface of the selected areas. Simultaneously to the UAV's flight, a foot-patrol transect survey was performed and the number of collared and non-collared dogs were recorded. Data collected during the interviews and the number of dogs counted during the foot-patrol transects informed a capture-recapture (CR) model fit into a Bayesian inferential framework to estimate the dog population size, which was found to be 78, 259, and 413 in the three study sites. The difference of the CR model estimates compared to previously available dog census count (110 and 289) can be explained by the fact that the study population addressed by the different methods differs. The human: dog ratio covered the same study population as the dog census and tended to underestimate the FRDD population size (97 and 161). Under the conditions within this study, the total number of dogs identified on the UAV pictures was 11, 96, and 71 for the three regions (compared to the total number of dogs counted during the foot-patrol transects of 112, 354 and 211). In addition, the quality of the UAV pictures was not sufficient to assess the presence of a mark on the spotted dogs. Therefore, no CR model could be implemented to estimate the size of the FRDD using UAV. We discussed ways for improving the use of UAV for this purpose, such as flying at a lower altitude in study area wisely chosen. We also suggest to investigate the possibility of using infrared camera and automatic detection of the dogs to increase visibility of the dogs in the pictures and limit workload of finding them. Finally, we discuss the need of using models, such as spatial capture-recapture models to obtain reliable estimates of the FRDD population. This publication may provide helpful directions to design dog population size estimation methods using UAV.


Subject(s)
Dogs , Pets , Animals , Bayes Theorem , Dog Diseases/epidemiology , Dogs/physiology , Guatemala/epidemiology , Humans , Pets/physiology , Population Density , Remote Sensing Technology
17.
Ecohealth ; 13(4): 761-774, 2016 12.
Article in English | MEDLINE | ID: mdl-27660213

ABSTRACT

Certain bat species serve as natural reservoirs for pathogens in several key viral families including henipa-, lyssa-, corona-, and filoviruses, which may pose serious threats to human health. The Common Vampire Bat (Desmodus rotundus), due to its abundance, sanguivorous feeding habit involving humans and domestic animals, and highly social behavioral ecology, may have an unusually high potential for interspecies disease transmission. Previous studies have investigated rabies dynamics in D. rotundus, yet the diversity of other viruses, bacteria, and other microbes that these bats may carry remains largely unknown. We screened 396 blood, urine, saliva, and fecal samples from D. rotundus captured in Guatemala for 13 viral families and genera. Positive results were found for rhabdovirus, adenovirus, and herpesvirus assays. We also screened these samples for Bartonella spp. and found that 38% of individuals tested positive. To characterize potential for interspecies transmission associated with feeding behavior, we also analyzed cytochrome B sequences from fecal samples to identify prey species and found that domestic cattle (Bos taurus) made up the majority of blood meals. Our findings suggest that the risk of pathogen spillover from Desmodus rotundus, including between domestic animal species, is possible and warrants further investigation to characterize this microbial diversity and expand our understanding of foraging ecology in their populations.


Subject(s)
Bartonella/pathogenicity , Chiroptera/microbiology , Animals , Cattle , Guatemala/epidemiology , Humans , Prevalence , Rabies/epidemiology , Rabies/transmission
18.
J Vector Ecol ; 40(2): 327-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26611968

ABSTRACT

Cats and their fleas collected in Guatemala were investigated for the presence of Bartonella infections. Bartonella bacteria were cultured from 8.2% (13/159) of cats, and all cultures were identified as B. henselae. Molecular analysis allowed detection of Bartonella DNA in 33.8% (48/142) of cats and in 22.4% (34/152) of cat fleas using gltA, nuoG, and 16S-23S internal transcribed spacer targets. Two Bartonella species, B. henselae and B. clarridgeiae, were identified in cats and cat fleas by molecular analysis, with B. henselae being more common than B. clarridgeiae in the cats (68.1%; 32/47 vs 31.9%; 15/47). The nuoG was found to be less sensitive for detecting B. clarridgeiae compared with other molecular targets and could detect only two of the 15 B. clarridgeiae-infected cats. No significant differences were observed for prevalence between male and female cats and between different age groups. No evident association was observed between the presence of Bartonella species in cats and in their fleas.


Subject(s)
Bartonella Infections/veterinary , Bartonella , Cat Diseases/microbiology , Ctenocephalides/microbiology , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/pathogenicity , Bartonella/physiology , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella henselae/genetics , Bartonella henselae/pathogenicity , Bartonella henselae/physiology , Cat Diseases/epidemiology , Cats , Female , Flea Infestations/epidemiology , Guatemala/epidemiology , Male , RNA, Ribosomal, 16S
19.
Prev Vet Med ; 118(1): 36-44, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25466762

ABSTRACT

Vampire bat rabies is a public and animal health concern throughout Latin America. As part of an ecological study of vampire bat depredation on cattle in southern Guatemala, we conducted a vaccine seroconversion study among three dairy farms. The main objectives of this cross sectional and cohort study were to understand factors associated with bat bites among cattle, to determine whether unvaccinated cattle had evidence of rabies virus exposure and evaluate whether exposure was related to bat bite prevalence, and to assess whether cattle demonstrate adequate seroconversion to two commercial vaccines used in Guatemala. In 2012, baseline blood samples were collected immediately prior to intramuscular inoculation of cattle with one of two modified live rabies vaccines. Post vaccination blood samples were collected 13 and 393 days later. Sera were tested for rabies virus neutralizing antibodies (rVNA) by the rapid fluorescent focus inhibition test (RFFIT). Across two years of study, 36% (254/702) of inspected cattle presented gross evidence of vampire bat bites. Individual cattle with a bat bite in 2012 were more likely have a bat bite in 2013. Prior to vaccination, 12% (42/350) of cattle sera demonstrated rVNA, but bite status in 2012 was not associated with presence of rVNA. Vaccine brand was the only factor associated with adequate rVNA response of cattle by day 13. However, vaccine brand and rVNA status at day 13 were associated with an adequate rVNA titer on day 393, with animals demonstrating an adequate titer at day 13 more likely to have an adequate titer at day 393. Our findings support stable levels of vampire bat depredation and evidence of rVNA in unvaccinated cattle. Brand of vaccine may be an important consideration impacting adequate rVNA response and long-term maintenance of rVNA in cattle. Further, the results demonstrate that initial response to vaccination is associated with rVNA status over one year following vaccination.


Subject(s)
Antibodies, Viral/blood , Cattle Diseases/immunology , Rabies Vaccines/immunology , Rabies/veterinary , Animals , Bites and Stings/epidemiology , Bites and Stings/veterinary , Bites and Stings/virology , Cattle , Cattle Diseases/blood , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Cattle Diseases/transmission , Chiroptera/virology , Cohort Studies , Dairying , Female , Guatemala/epidemiology , Linear Models , Male , Rabies/epidemiology , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Seroepidemiologic Studies
20.
BMC Res Notes ; 8: 955, 2015 Jan 10.
Article in English | MEDLINE | ID: mdl-25576098

ABSTRACT

BACKGROUND: Rabies is a fatal encephalitis caused by rabies virus, of the genus Lyssavirus. The principal reservoir for rabies in Latin America is the common vampire bat (Desmodus rotundus), which feeds routinely on the blood of cattle, and when livestock are scarce, may prey on other mammals, including humans. Although rabies is endemic in common vampire bat populations in Guatemala, there is limited research on the extent of exposure to bats among human populations living near bat refuges. RESULTS: A random sample of 270 of 473 households (57%) in two communities located within 2 Km of a known bat roost was selected and one adult from each household was interviewed. Exposure to bats (bites, scratches or bare skin contact) was reported by 96 (6%) of the 1,721 residents among the selected households. Of those exposed, 40% received rabies post-exposure prophylaxis. Four percent of household respondents reported that they would seek rabies post exposure prophylaxis if they were bitten by a bat. CONCLUSIONS: These findings demonstrate that exposure to bats in communities near bat roosts is common but recognition of the potential for rabies transmission from bats is low. There is a need for educational outreach to raise awareness of bat-associated rabies, prevent exposures to bats and ensure appropriate health-seeking behaviours for bat-inflicted wounds, particularly among communities living near bat roosts in Guatemala.


Subject(s)
Chiroptera , Disease Vectors , Health Knowledge, Attitudes, Practice , Rabies/transmission , Animals , Cross-Sectional Studies , Guatemala/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL