Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Am J Pathol ; 191(3): 418-424, 2021 03.
Article in English | MEDLINE | ID: mdl-33345998

ABSTRACT

Choroidal neovascularization (CNV) is a prevalent cause of vision loss in patients with age-related macular degeneration. Runt-related transcription factor 1 (RUNX1) has been identified as an important mediator of aberrant retinal angiogenesis in proliferative diabetic retinopathy and its modulation has proven to be effective in curbing pathologic angiogenesis in experimental oxygen-induced retinopathy. However, its role in CNV remains to be elucidated. This study demonstrates RUNX1 expression in critical cell types involved in a laser-induced model of CNV in mice. Furthermore, the preclinical efficacy of Ro5-3335, a small molecule inhibitor of RUNX1, in experimental CNV is reported. RUNX1 inhibitor Ro5-3335, aflibercept-an FDA-approved vascular endothelial growth factor (VEGF) inhibitor, or a combination of both, were administered by intravitreal injection immediately after laser injury. The CNV area of choroidal flatmounts was evaluated by immunostaining with isolectin B4, and vascular permeability was analyzed by fluorescein angiography. A single intravitreal injection of Ro5-3335 significantly decreased the CNV area 7 days after laser injury, and when combined with aflibercept, reduced vascular leakage more effectively than aflibercept alone. These data suggest that RUNX1 inhibition alone or in combination with anti-VEGF drugs may be a new therapy upon further clinical validation for patients with neovascular age-related macular degeneration.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Choroidal Neovascularization/drug therapy , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Small Molecule Libraries/pharmacology , Animals , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Receptors, Vascular Endothelial Growth Factor
2.
Am J Pathol ; 191(7): 1193-1208, 2021 07.
Article in English | MEDLINE | ID: mdl-33894177

ABSTRACT

Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-ß1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Furin/metabolism , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Animals , Bleomycin , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lung/metabolism , Lung/pathology , Male , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Treatment Outcome
3.
FASEB J ; 35(2): e21155, 2021 02.
Article in English | MEDLINE | ID: mdl-33135824

ABSTRACT

Runt-related transcription factor 1 (RUNX1) acts as a mediator of aberrant retinal angiogenesis and has been implicated in the progression of proliferative diabetic retinopathy (PDR). Patients with PDR, retinopathy of prematurity (ROP), and wet age-related macular degeneration (wet AMD) have been found to have elevated levels of Tumor Necrosis Factor-alpha (TNF-α) in the eye. In fibrovascular membranes (FVMs) taken from patients with PDR RUNX1 expression was increased in the vasculature, while in human retinal microvascular endothelial cells (HRMECs), TNF-α stimulation causes increased RUNX1 expression, which can be modulated by RUNX1 inhibitors. Using TNF-α pathway inhibitors, we determined that in HRMECs, TNF-α-induced RUNX1 expression occurs via JNK activation, while NF-κB and p38/MAPK inhibition did not affect RUNX1 expression. JNK inhibitors were also effective at stopping high D-glucose-stimulated RUNX1 expression. We further linked JNK to RUNX1 through Activator Protein 1 (AP-1) and investigated the JNK-AP-1-RUNX1 regulatory feedback loop, which can be modulated by VEGF. Additionally, stimulation with TNF-α and D-glucose had an additive effect on RUNX1 expression, which was downregulated by VEGF modulation. These data suggest that the downregulation of RUNX1 in conjunction with anti-VEGF agents may be important in future treatments for the management of diseases of pathologic ocular angiogenesis.


Subject(s)
Choroidal Neovascularization/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , MAP Kinase Signaling System/drug effects , Retinopathy of Prematurity/metabolism , Tumor Necrosis Factor-alpha/metabolism , Wet Macular Degeneration/metabolism , Animals , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Disease Models, Animal , Endothelial Cells/drug effects , Glucose/pharmacology , Humans , Mice , Mice, Inbred C57BL , Retina/cytology , Retina/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
4.
Ophthalmology ; 123(9): 2028-36, 2016 09.
Article in English | MEDLINE | ID: mdl-27423310

ABSTRACT

PURPOSE: The human orbit is an environment that is vulnerable to inflammation and edema in the setting of autoimmune thyroid disease. Our study investigated the tenet that orbital adipose tissue lacks lymphatic vessels and analyzed the clinicopathologic differences between patients with acute and chronic thyroid eye disease (TED). The underlying molecular mediators of blood and lymphatic vessel formation within the orbital fat also were evaluated. DESIGN: Retrospective cohort study. PARTICIPANTS: The study included fat specimens from 26 orbits of 15 patients with TED undergoing orbital decompression. Orbital fat specimens from patients without TED as well as cadaveric orbital fat served as controls. METHODS: Tissue specimens were processed as formalin-fixed, paraffin-embedded sections or frozen cryosections for immunohistochemistry. Total RNA was extracted and analyzed via quantitative (real-time) reverse-transcription polymerase chain reaction. Clinicopathologic correlation was made by determining the clinical activity score (CAS) of each patient with TED. MAIN OUTCOME MEASURES: Samples were examined for vascular and lymphatic markers including podoplanin, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and cluster of differentiation 31 (CD31) by immunohistochemistry, as well as for mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptors, semaphorin 3F, neuropilin 1, neuropilin 2, podoplanin, and LYVE-1 by quantitative (real-time) reverse-transcription polymerase chain reaction. RESULTS: Clinicopathologic correlation revealed increased staining of CD31-positive blood vessels in patients with acute TED with a CAS more than 4, as well as rare staining of podoplanin-positive lymphatic vessels within acutely inflamed orbital fat tissue. Additionally, quantitative (real-time) reverse-transcription polymerase chain reaction analysis demonstrated increased expression of VEGF receptor (VEGFR) 2 as well as VEGF signaling molecules VEGF-A, VEGF-C, and VEGF-D. CONCLUSIONS: In acute TED, compared with chronic TED and control orbital fat, there is increased blood vessel density, suggesting neovascularization and rare lymphatic vessels suggestive of limited lymphangiogenesis. This proangiogenic and prolymphangiogenic microenvironment is likely the result of the increased expression of VEGFR-2, VEGF-A, VEGF-C, and VEGF-D. These findings imply that orbital edema in acute TED may be mediated, in part, by both the formation of new, immature blood vessels and the formation of lymphatic capillaries that are functionally incapable of draining interstitial fluid.


Subject(s)
Graves Ophthalmopathy/physiopathology , Intercellular Signaling Peptides and Proteins/metabolism , Lymphangiogenesis/physiology , Neovascularization, Pathologic/metabolism , Adipose Tissue/metabolism , Adult , Aged , Biomarkers , Case-Control Studies , Female , Graves Ophthalmopathy/metabolism , Humans , Immunohistochemistry , Lymphatic Vessels/pathology , Male , Middle Aged , Neovascularization, Pathologic/pathology , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Vascular Endothelial Growth Factor/metabolism , Retrospective Studies , Vascular Endothelial Growth Factors/metabolism
5.
Am J Pathol ; 184(10): 2618-26, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092275

ABSTRACT

Diabetes can lead to vision loss because of progressive degeneration of the neurovascular unit in the retina, a condition known as diabetic retinopathy. In its early stages, the pathology is characterized by microangiopathies, including microaneurysms, microhemorrhages, and nerve layer infarcts known as cotton-wool spots. Analyses of postmortem human retinal tissue and retinas from animal models indicate that degeneration of the pericytes, which constitute the outer layer of capillaries, is an early event in diabetic retinopathy; however, the relative contribution of specific cellular components to the pathobiology of diabetic retinopathy remains to be defined. We investigated the phenotypic consequences of pericyte death on retinal microvascular integrity by using nondiabetic mice conditionally expressing a diphtheria toxin receptor in mural cells. Five days after administering diphtheria toxin in these adult mice, changes were observed in the retinal vasculature that were similar to those observed in diabetes, including microaneurysms and increased vascular permeability, suggesting that pericyte cell loss is sufficient to trigger retinal microvascular degeneration. Therapies aimed at preventing or delaying pericyte dropout may avoid or attenuate the retinal microangiopathy associated with diabetes.


Subject(s)
Diabetic Retinopathy/pathology , Pericytes/pathology , Retina/pathology , Retinal Vessels/pathology , Animals , Capillaries/pathology , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microvessels/pathology , Retinal Degeneration
6.
Mol Vis ; 21: 673-87, 2015.
Article in English | MEDLINE | ID: mdl-26120272

ABSTRACT

PURPOSE: Epiretinal fibrovascular membranes (FVMs) are a hallmark of proliferative diabetic retinopathy (PDR). Surgical removal of FVMs is often indicated to treat tractional retinal detachment. This potentially informative pathological tissue is usually disposed of after surgery without further examination. We developed a method for isolating and characterizing cells derived from FVMs and correlated their expression of specific markers in culture with that in tissue. METHODS: FVMs were obtained from 11 patients with PDR during diabetic vitrectomy surgery and were analyzed with electron microscopy (EM), comparative genomic hybridization (CGH), immunohistochemistry, and/or digested with collagenase II for cell isolation and culture. Antibody arrays and enzyme-linked immunosorbent assay (ELISA) were used to profile secreted angiogenesis-related proteins in cell culture supernatants. RESULTS: EM analysis of the FVMs showed abnormal vessels composed of endothelial cells with large nuclei and plasma membrane infoldings, loosely attached perivascular cells, and stromal cells. The cellular constituents of the FVMs lacked major chromosomal aberrations as shown with CGH. Cells derived from FVMs (C-FVMs) could be isolated and maintained in culture. The C-FVMs retained the expression of markers of cell identity in primary culture, which define specific cell populations including CD31-positive, alpha-smooth muscle actin-positive (SMA), and glial fibrillary acidic protein-positive (GFAP) cells. In primary culture, secretion of angiopoietin-1 and thrombospondin-1 was significantly decreased in culture conditions that resemble a diabetic environment in SMA-positive C-FVMs compared to human retinal pericytes derived from a non-diabetic donor. CONCLUSIONS: C-FVMs obtained from individuals with PDR can be isolated, cultured, and profiled in vitro and may constitute a unique resource for the discovery of cell signaling mechanisms underlying PDR that extends beyond current animal and cell culture models.


Subject(s)
Diabetic Retinopathy/pathology , Actins/metabolism , Adult , Angiopoietin-1/metabolism , Cell Proliferation , Cell Separation , Cells, Cultured , Comparative Genomic Hybridization , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Epiretinal Membrane/genetics , Epiretinal Membrane/metabolism , Epiretinal Membrane/pathology , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
7.
Nat Med ; 29(5): 1243-1252, 2023 05.
Article in English | MEDLINE | ID: mdl-37188781

ABSTRACT

We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia-Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia.


Subject(s)
Alzheimer Disease , Animals , Female , Humans , Male , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Heterozygote , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction
8.
Ophthalmol Sci ; 2(3)2022 Sep.
Article in English | MEDLINE | ID: mdl-36213726

ABSTRACT

Purpose: To test the efficacy of runt-related transcription factor 1 (RUNX1) inhibition with topical nanoemulsion containing Ro5-3335 (eNano-Ro5) in experimental ocular neovascularization. Design: Preclinical experimental study. Participants: In vitro primary culture human retinal endothelial cell (HREC) culture. C57BL/6J 6- to 10-week-old male and female mice. Methods: We evaluated the effect of eNano-Ro5 in cell proliferation, cell toxicity, and migration of HRECs. We used an alkali burn model of corneal neovascularization and a laser-induced model of choroidal neovascularization to test in vivo efficacy of eNano-Ro5 in pathologic angiogenesis in mice. We used mass spectrometry to measure penetration of Ro5-3335 released from the nanoemulsion in ocular tissues. Main Outcome Measures: Neovascular area. Results: RUNX1 inhibition reduced cell proliferation and migration in vitro. Mass spectrometry analysis revealed detectable levels of the active RUNX1 small-molecule inhibitor Ro5-3335 in the anterior and posterior segment of the mice eyes. Topical treatment with eNano-Ro5 significantly reduced corneal neovascularization and improved corneal wound healing after alkali burn. Choroidal neovascularization lesion size and leakage were significantly reduced after treatment with topical eNano-Ro5. Conclusions: Topical treatment with eNano-Ro5 is an effective and viable platform to deliver a small-molecule RUNX1 inhibitor. This route of administration offers advantages that could improve the management and outcomes of these sight-threatening conditions. Topical noninvasive delivery of RUNX1 inhibitor could be beneficial for many patients with pathologic ocular neovascularization.

9.
Transl Vis Sci Technol ; 9(8): 26, 2020 07.
Article in English | MEDLINE | ID: mdl-32855872

ABSTRACT

Purpose: Acute orbital inflammation can lead to irreversible vision loss in serious cases. Treatment thus far has been limited to systemic steroids or surgical decompression of the orbit. An animal model that mimics the characteristic features of acute orbital inflammation as found in thyroid eye disease can be used to explore novel treatment modalities. Methods: We developed a murine model of orbital inflammation by injecting oxazolone into the mouse orbit. The mice underwent magnetic resonance imaging (MRI) and were euthanized at various time points for histologic examination. Immunofluorescence studies of specific inflammatory cells and cytokine arrays were performed. Results: We found clinical and radiographic congruity between the murine model and human disease. After 72 hours, sensitized mice exhibited periorbital dermatitis and inflammation in the eyelids of the injected side. By one week, increased proptosis in the injected eye with significant eyelid edema was appreciated. By four weeks, inflammation and proptosis were decreased. At all three time points, the mice demonstrated exophthalmos and periorbital edema. Histopathologically, populations of inflammatory cells including T cells, macrophages, and neutrophils shared similarities with patient samples in thyroid eye disease. Proteomic changes in the levels of inflammatory and angiogenic markers correlated to the expected angiogenic, inflammatory, and fibrotic responses observed in patients with thyroid eye disease. Conclusions: A murine model of orbital inflammation created using oxazolone recapitulates some of the clinical features of thyroid eye disease and potentially other nonspecific orbital inflammation, typified by inflammatory cell infiltration, orbital tissue expansion and remodeling, and subsequent fibrosis. Translational Relevance: This animal model could serve as a viable platform with which to understand the underlying mechanisms of acute orbital inflammation and to investigate potential new, targeted treatments.


Subject(s)
Graves Ophthalmopathy , Oxazolone , Animals , Disease Models, Animal , Humans , Inflammation/chemically induced , Mice , Oxazolone/toxicity , Proteomics
10.
Sci Rep ; 10(1): 20554, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257736

ABSTRACT

Proliferative vitreoretinopathy (PVR) is the leading cause of retinal detachment surgery failure. Despite significant advances in vitreoretinal surgery, it still remains without an effective prophylactic or therapeutic medical treatment. After ocular injury or retinal detachment, misplaced retinal cells undergo epithelial to mesenchymal transition (EMT) to form contractile membranes within the eye. We identified Runt-related transcription factor 1 (RUNX1) as a gene highly expressed in surgically-removed human PVR specimens. RUNX1 upregulation was a hallmark of EMT in primary cultures derived from human PVR membranes (C-PVR). The inhibition of RUNX1 reduced proliferation of human C-PVR cells in vitro, and curbed growth of freshly isolated human PVR membranes in an explant assay. We formulated Ro5-3335, a lipophilic small molecule RUNX1 inhibitor, into a nanoemulsion that when administered topically curbed the progression of disease in a novel rabbit model of mild PVR developed using C-PVR cells. Mass spectrometry analysis detected 2.67 ng/mL of Ro5-3335 within the vitreous cavity after treatment. This work shows a critical role for RUNX1 in PVR and supports the feasibility of targeting RUNX1 within the eye for the treatment of an EMT-mediated condition using a topical ophthalmic agent.


Subject(s)
Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation/drug effects , Vitreoretinopathy, Proliferative , Adult , Aged , Animals , Core Binding Factor Alpha 2 Subunit/biosynthesis , Disease Models, Animal , Emulsions , Female , Humans , Male , Rabbits , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology
11.
Nat Med ; 25(11): 1680-1683, 2019 11.
Article in English | MEDLINE | ID: mdl-31686034

ABSTRACT

We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease.


Subject(s)
Alzheimer Disease/genetics , Apolipoprotein E3/genetics , Neurodegenerative Diseases/genetics , Presenilin-1/genetics , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/genetics , Amyloid/metabolism , Apolipoprotein E2/genetics , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Female , Homozygote , Humans , Male , Mutation/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Pedigree
12.
Invest Ophthalmol Vis Sci ; 58(10): 3940-3949, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28777835

ABSTRACT

Purpose: The purpose of this study was to develop a method for isolating, culturing, and characterizing cells from patient-derived membranes in proliferative vitreoretinopathy (PVR) to be used for drug testing. Methods: PVR membranes were obtained from six patients with grade C PVR. Membrane fragments were analyzed by gross evaluation, fixed for immunohistologic studies to establish cell identity, or digested with collagenase II to obtain single cell suspensions for culture. PVR-derived primary cultures were used to examine the effects of methotrexate (MTX) on proliferation, migration, and cell death. Results: Gross analysis of PVR membranes showed presence of pigmented cells, indicative of retinal pigment epithelial cells. Immunohistochemistry identified cells expressing α-smooth muscle actin, glial fibrillary acidic protein, Bestrophin-1, and F4/80, suggesting the presence of multiple cell types in PVR. Robust PVR primary cultures (C-PVR) were successfully obtained from human membranes, and these cells retained the expression of cell identity markers in culture. C-PVR cultures formed membranes and band-like structures in culture reminiscent of the human condition. MTX significantly reduced the proliferation and band formation of C-PVR, whereas it had no significant effect on cell migration. MTX also induced regulated cell death within C-PVR as assessed by increased expression of caspase-3/7. Conclusions: PVR cells obtained from human membranes can be successfully isolated, cultured, and profiled in vitro. Using these primary cultures, we identified MTX as capable of significantly reducing growth and inducing cell death of PVR cells in vitro.


Subject(s)
Epiretinal Membrane/drug therapy , Immunosuppressive Agents/pharmacology , Methotrexate/pharmacology , Retinal Pigment Epithelium/drug effects , Vitreoretinopathy, Proliferative/drug therapy , Adult , Aged , Apoptosis/drug effects , Biomarkers/metabolism , Cell Culture Techniques , Cell Movement/physiology , Cell Proliferation/physiology , Cell Separation , Epiretinal Membrane/metabolism , Epiretinal Membrane/pathology , Extracellular Matrix Proteins/metabolism , Female , Fluorescent Antibody Technique, Indirect , Humans , Male , Middle Aged , Models, Biological , Phenotype , Retinal Detachment/complications , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Tumor Necrosis Factor-alpha/pharmacology , Vitreoretinopathy, Proliferative/etiology , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology
13.
J Exp Med ; 214(8): 2271-2282, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28698285

ABSTRACT

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a neurological syndrome characterized by small vessel disease (SVD), stroke, and vascular cognitive impairment and dementia caused by mutations in NOTCH3 No therapies are available for this condition. Loss of mural cells, which encompass pericytes and vascular smooth muscle cells, is a hallmark of CADASIL and other SVDs, including diabetic retinopathy, resulting in vascular instability. Here, we showed that Notch3 signaling is both necessary and sufficient to support mural cell coverage in arteries using genetic rescue in Notch3 knockout mice. Furthermore, we show that systemic administration of an agonist Notch3 antibody prevents mural cell loss and modifies plasma proteins associated with Notch3 activity, including endostatin/collagen 18α1 and Notch3 extracellular domain in mice with the C455R mutation, a CADASIL variant associated with Notch3 loss of function. These findings open opportunities for the treatment of CADASIL and other SVDs by modulating Notch3 signaling.


Subject(s)
Antibodies/therapeutic use , CADASIL/therapy , Receptor, Notch3/physiology , Animals , Antibodies/immunology , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiopathology , Pericytes/physiology , Receptor, Notch3/immunology , Signal Transduction/physiology
14.
Diabetes ; 66(7): 1950-1956, 2017 07.
Article in English | MEDLINE | ID: mdl-28400392

ABSTRACT

Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world's working adult population and affects those with type 1 and type 2 diabetes. We identified Runt-related transcription factor 1 (RUNX1) as a gene upregulated in CD31+ vascular endothelial cells obtained from human PDR fibrovascular membranes (FVMs) via transcriptomic analysis. In vitro studies using human retinal microvascular endothelial cells (HRMECs) showed increased RUNX1 RNA and protein expression in response to high glucose, whereas RUNX1 inhibition reduced HRMEC migration, proliferation, and tube formation. Immunohistochemical staining for RUNX1 showed reactivity in vessels of patient-derived FVMs and angiogenic tufts in the retina of mice with oxygen-induced retinopathy, suggesting that RUNX1 upregulation is a hallmark of aberrant retinal angiogenesis. Inhibition of RUNX1 activity with the Ro5-3335 small molecule resulted in a significant reduction of neovascular tufts in oxygen-induced retinopathy, supporting the feasibility of targeting RUNX1 in aberrant retinal angiogenesis.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Diabetic Retinopathy/genetics , Endothelial Cells/metabolism , Retina/metabolism , Retinal Neovascularization/genetics , Adult , Aged , Aged, 80 and over , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Core Binding Factor Alpha 2 Subunit/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Retinopathy/etiology , Diabetic Retinopathy/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Female , Glucose/pharmacology , Humans , Immunohistochemistry , Male , Mice , Middle Aged , Oxygen/adverse effects , RNA, Messenger/metabolism , Retinal Neovascularization/metabolism
15.
Invest Ophthalmol Vis Sci ; 57(11): 4704-12, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27607416

ABSTRACT

PURPOSE: Accumulation of oxidized phospholipids/lipoproteins with age is suggested to contribute to the pathogenesis of AMD. We investigated the effect of oxidized LDL (ox-LDL) on human RPE cells. METHODS: Primary human fetal RPE (hf-RPE) and ARPE-19 cells were treated with different doses of LDL or ox-LDL. Assessment of cell death was measured by lactate dehydrogenase release into the conditioned media. Barrier function of RPE was assayed by measuring transepithelial resistance. Lysosomal accumulation of ox-LDL was determined by immunostaining. Expression of CD36 was determined by RT-PCR; protein blot and function was examined by receptor blocking. NLRP3 inflammasome activation was assessed by RT-PCR, protein blot, caspase-1 fluorescent probe assay, and inhibitor assays. RESULTS: Treatment with ox-LDL, but not LDL, for 48 hours caused significant increase in hf-RPE and ARPE-19 (P < 0.001) cell death. Oxidized LDL treatment of hf-RPE cells resulted in a significant decrease in transepithelial resistance (P < 0.001 at 24 hours and P < 0.01 at 48 hours) relative to LDL-treated and control cells. Internalized ox-LDL was targeted to RPE lysosomes. Uptake of ox-LDL but not LDL significantly increased CD36 protein and mRNA levels by more than 2-fold. Reverse transcription PCR, protein blot, and caspase-1 fluorescent probe assay revealed that ox-LDL treatment induced NLRP3 inflammasome when compared with LDL treatment and control. Inhibition of NLRP3 activation using 10 µM isoliquiritigenin significantly (P < 0.001) inhibited ox-LDL induced cytotoxicity. CONCLUSIONS: These data are consistent with the concept that ox-LDL play a role in the pathogenesis of AMD by NLRP3 inflammasome activation. Suppression of NLRP3 inflammasome activation could attenuate RPE degeneration and AMD progression.


Subject(s)
CD36 Antigens/metabolism , Gene Expression Regulation , Inflammasomes/metabolism , Lipoproteins, LDL/metabolism , Macular Degeneration/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Retinal Pigment Epithelium/metabolism , Cell Death , Cell Line , Humans , Immunoblotting , Macular Degeneration/genetics , Macular Degeneration/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/biosynthesis , Oxidation-Reduction , RNA/genetics , Real-Time Polymerase Chain Reaction , Retinal Pigment Epithelium/embryology , Signal Transduction
16.
Invest Ophthalmol Vis Sci ; 55(8): 4747-58, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24994868

ABSTRACT

PURPOSE: To evaluate the mechanism of tamoxifen-induced cell death in human cultured RPE cells, and to investigate concurrent cell death mechanisms including pyroptosis, apoptosis, and necroptosis. METHODS: Human RPE cells were cultured until confluence and treated with tamoxifen; cell death was measured by detecting LDH release. Tamoxifen-induced cell death was further confirmed by 7-aminoactinomycin D (7-AAD) and annexin V staining. Lysosomal destabilization was assessed using lysosomal-associated membrane protein-1 (LAMP-1) and acridine orange staining. The roles of lysosomal enzymes cathepsin B and L were examined by blocking their activity. Caspase activity was evaluated by caspase-1, -3, -8, and -9 specific inhibition. Cells were primed with IL-1α and treated with tamoxifen; mature IL-1ß production was quantified via ELISA. Caspase activity was verified with the fluorochrome-labeled inhibitor of caspases (FLICA) probe specific for each caspase. Regulated cell necrosis or necroptosis was examined with 7-AAD and inhibition of receptor-interacting protein 1 (RIP1) kinase using necrostatin-1 (Nec-1). RESULTS: Cell death occurred within 2 hours of tamoxifen treatment of confluent RPE cells and was accompanied by lysosomal membrane permeabilization. Blockade of cathepsin B and L activity led to a significant decrease in cell death, indicating that lysosomal destabilization and cathepsin release occur prior to regulated cell death. Tamoxifen-induced toxicity was shown to occur through both caspase-dependent and caspase-independent cell death pathways. Treatment of RPE cells with caspase inhibitors and Nec-1 resulted in a near complete rescue from cell death. CONCLUSIONS: Tamoxifen-induced cell death occurs through concurrent regulated cell death mechanisms. Simultaneous inhibition of caspase-dependent and caspase-independent cell death pathways is required to protect cells from tamoxifen. Inhibition of upstream activators, such as the cathepsins, may represent a novel approach to block multiple cell death pathways.


Subject(s)
Retinal Diseases/chemically induced , Retinal Pigment Epithelium/pathology , Tamoxifen/toxicity , Blotting, Western , Caspases/metabolism , Cell Death/drug effects , Cell Survival , Cells, Cultured , Estrogen Antagonists/toxicity , Humans , Interleukin-1beta/metabolism , Lysosomes/metabolism , Lysosomes/pathology , Retinal Diseases/metabolism , Retinal Diseases/pathology , Retinal Pigment Epithelium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL