Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 22(2): 140-153, 2021 02.
Article in English | MEDLINE | ID: mdl-33349708

ABSTRACT

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Subject(s)
Antigen Presentation , Cross-Priming , Dendritic Cells/metabolism , Lectins, C-Type/metabolism , Phagosomes/metabolism , Receptors, Immunologic/metabolism , Receptors, Mitogen/metabolism , T-Lymphocytes/metabolism , Animals , Cell Death , Coculture Techniques , Dendritic Cells/immunology , HEK293 Cells , Histocompatibility Antigens Class I/metabolism , Humans , Lectins, C-Type/genetics , Ligands , Mice , NADPH Oxidases/metabolism , Phagosomes/genetics , Phagosomes/immunology , Phosphorylation , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Receptors, Immunologic/genetics , Receptors, Mitogen/genetics , Signal Transduction , Syk Kinase/metabolism , T-Lymphocytes/immunology
2.
Nat Immunol ; 19(8): 885-897, 2018 08.
Article in English | MEDLINE | ID: mdl-30013147

ABSTRACT

The functions and transcriptional profiles of dendritic cells (DCs) result from the interplay between ontogeny and tissue imprinting. How tumors shape human DCs is unknown. Here we used RNA-based next-generation sequencing to systematically analyze the transcriptomes of plasmacytoid pre-DCs (pDCs), cell populations enriched for type 1 conventional DCs (cDC1s), type 2 conventional DCs (cDC2s), CD14+ DCs and monocytes-macrophages from human primary luminal breast cancer (LBC) and triple-negative breast cancer (TNBC). By comparing tumor tissue with non-invaded tissue from the same patient, we found that 85% of the genes upregulated in DCs in LBC were specific to each DC subset. However, all DC subsets in TNBC commonly showed enrichment for the interferon pathway, but those in LBC did not. Finally, we defined transcriptional signatures specific for tumor DC subsets with a prognostic effect on their respective breast-cancer subtype. We conclude that the adjustment of DCs to the tumor microenvironment is subset specific and can be used to predict disease outcome. Our work also provides a resource for the identification of potential targets and biomarkers that might improve antitumor therapies.


Subject(s)
Dendritic Cells/physiology , Mammary Glands, Human/physiology , Triple Negative Breast Neoplasms/genetics , Biomarkers, Tumor , Cell Differentiation , Cell Movement , Female , Flow Cytometry , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Interferons/genetics , Prognosis , Transcriptome , Triple Negative Breast Neoplasms/diagnosis , Tumor Microenvironment
3.
Cell ; 162(6): 1210-2, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26359981

ABSTRACT

Eickhoff et al. and Hor et al. use time-lapse intravital microscopy to show an unexpected choreography of CD4+ and CD8+ T cells "dancing" between different dendritic cell sub-populations during priming of cytotoxic immune responses to viruses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Communication , Dendritic Cells/immunology , Vaccinia virus/physiology , Vaccinia/immunology , Animals
4.
Nature ; 617(7962): 807-817, 2023 05.
Article in English | MEDLINE | ID: mdl-37198490

ABSTRACT

Microbial organisms have key roles in numerous physiological processes in the human body and have recently been shown to modify the response to immune checkpoint inhibitors1,2. Here we aim to address the role of microbial organisms and their potential role in immune reactivity against glioblastoma. We demonstrate that HLA molecules of both glioblastoma tissues and tumour cell lines present bacteria-specific peptides. This finding prompted us to examine whether tumour-infiltrating lymphocytes (TILs) recognize tumour-derived bacterial peptides. Bacterial peptides eluted from HLA class II molecules are recognized by TILs, albeit very weakly. Using an unbiased antigen discovery approach to probe the specificity of a TIL CD4+ T cell clone, we show that it recognizes a broad spectrum of peptides from pathogenic bacteria, commensal gut microbiota and also glioblastoma-related tumour antigens. These peptides were also strongly stimulatory for bulk TILs and peripheral blood memory cells, which then respond to tumour-derived target peptides. Our data hint at how bacterial pathogens and bacterial gut microbiota can be involved in specific immune recognition of tumour antigens. The unbiased identification of microbial target antigens for TILs holds promise for future personalized tumour vaccination approaches.


Subject(s)
Antigens, Neoplasm , Bacteria , Bacterial Proteins , Glioblastoma , Lymphocytes, Tumor-Infiltrating , Peptide Fragments , Humans , Antigens, Neoplasm/immunology , Bacterial Proteins/immunology , Cancer Vaccines/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Gastrointestinal Microbiome/immunology , Glioblastoma/immunology , Glioblastoma/pathology , Histocompatibility Antigens Class II/immunology , HLA Antigens/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Peptide Fragments/immunology , Symbiosis , Bacteria/immunology , Bacteria/pathogenicity
5.
Nat Immunol ; 17(2): 140-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26657003

ABSTRACT

Innate sensing of pathogens initiates inflammatory cytokine responses that need to be tightly controlled. We found here that after engagement of Toll-like receptors (TLRs) in myeloid cells, deficient sumoylation caused increased secretion of transcription factor NF-κB-dependent inflammatory cytokines and a massive type I interferon signature. In mice, diminished sumoylation conferred susceptibility to endotoxin shock and resistance to viral infection. Overproduction of several NF-κB-dependent inflammatory cytokines required expression of the type I interferon receptor, which identified type I interferon as a central sumoylation-controlled hub for inflammation. Mechanistically, the small ubiquitin-like modifier SUMO operated from a distal enhancer of the gene encoding interferon-ß (Ifnb1) to silence both basal and stimulus-induced activity of the Ifnb1 promoter. Therefore, sumoylation restrained inflammation by silencing Ifnb1 expression and by strictly suppressing an unanticipated priming by type I interferons of the TLR-induced production of inflammatory cytokines.


Subject(s)
Disease Resistance , Gene Expression Regulation , Immunity, Innate , Immunomodulation , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Sumoylation , Animals , Chromatin/genetics , Chromatin/metabolism , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Disease Susceptibility , Enhancer Elements, Genetic , Gene Expression Profiling , Genetic Loci , Inflammation/virology , Inflammation Mediators/metabolism , Interferon-beta/metabolism , Lipopolysaccharides/immunology , Mice , Mice, Knockout , Protein Binding , Receptor, Interferon alpha-beta/metabolism , Regulatory Elements, Transcriptional , SUMO-1 Protein/metabolism , Shock, Septic/genetics , Shock, Septic/immunology , Shock, Septic/metabolism , Signal Transduction , Sumoylation/genetics , Sumoylation/immunology , Toll-Like Receptors/metabolism
7.
Immunity ; 50(3): 629-644.e8, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30737147

ABSTRACT

Upon activation, naive CD4+ T cells differentiate into distinct T cell subsets via processes reliant on epigenetically regulated, lineage-specific developmental programs. Here, we examined the function of the histone methyltransferase SETDB1 in T helper (Th) cell differentiation. Setdb1-/- naive CD4+ T cells exhibited exacerbated Th1 priming, and when exposed to a Th1-instructive signal, Setdb1-/- Th2 cells crossed lineage boundaries and acquired a Th1 phenotype. SETDB1 did not directly control Th1 gene promoter activity but relied instead on deposition of the repressive H3K9me3 mark at a restricted and cell-type-specific set of endogenous retroviruses (ERVs) located in the vicinity of genes involved in immune processes. Refined bioinformatic analyses suggest that these retrotransposons regulate Th1 gene cis-regulatory elements or act as Th1 gene enhancers. Thus, H3K9me3 deposition by SETDB1 ensures Th cell lineage integrity by repressing a repertoire of ERVs that have been exapted into cis-regulatory modules to shape and control the Th1 gene network.


Subject(s)
Cell Lineage/immunology , Endogenous Retroviruses/immunology , Histone Methyltransferases/immunology , Histone-Lysine N-Methyltransferase/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Female , Histones/immunology , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/immunology , Th1 Cells/immunology , Th2 Cells/immunology
9.
Immunity ; 46(2): 163-164, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228271

ABSTRACT

Encounters between naive T lymphocytes and dendritic cells (DCs) bearing adequate co-stimulatory signals are rare. In this issue of Immunity, Brewitz et al. (2017) show that chemokines secreted by CD8+ T cells recruit myeloid and plasmacytoid DCs that in turn boost CD8+ T cell activation.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Dendritic Cells/cytology , Antigens , Chemokines , Lymphocyte Activation/immunology
10.
Immunity ; 47(3): 582-596.e6, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28930664

ABSTRACT

After entering tissues, monocytes differentiate into cells that share functional features with either macrophages or dendritic cells (DCs). How monocyte fate is directed toward monocyte-derived macrophages (mo-Macs) or monocyte-derived DCs (mo-DCs) and which transcription factors control these differentiation pathways remains unknown. Using an in vitro culture model yielding human mo-DCs and mo-Macs closely resembling those found in vivo in ascites, we show that IRF4 and MAFB were critical regulators of monocyte differentiation into mo-DCs and mo-Macs, respectively. Activation of the aryl hydrocarbon receptor (AHR) promoted mo-DC differentiation through the induction of BLIMP-1, while impairing differentiation into mo-Macs. AhR deficiency also impaired the in vivo differentiation of mouse mo-DCs. Finally, AHR activation correlated with mo-DC infiltration in leprosy lesions. These results establish that mo-DCs and mo-Macs are controlled by distinct transcription factors and show that AHR acts as a molecular switch for monocyte fate specification in response to micro-environmental factors.


Subject(s)
Dendritic Cells/metabolism , Macrophages/metabolism , Monocytes/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Ascites , Cells, Cultured , Cluster Analysis , Cytokines/metabolism , Cytokines/pharmacology , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Interferon Regulatory Factors/metabolism , Leprosy/immunology , Leprosy/metabolism , Leprosy/microbiology , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , MafB Transcription Factor/metabolism , Male , Mice , Mice, Knockout , Monocytes/cytology , Monocytes/drug effects , Monocytes/immunology , Neoplasms/genetics , Neoplasms/metabolism , Positive Regulatory Domain I-Binding Factor 1 , Receptors, Aryl Hydrocarbon/genetics , Repressor Proteins/metabolism , Transcriptome
11.
Cell ; 147(6): 1355-68, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22153078

ABSTRACT

Antigen (Ag) crosspresentation by dendritic cells (DCs) involves the presentation of internalized Ags on MHC class I molecules to initiate CD8+ T cell-mediated immunity in response to certain pathogens and tumor cells. Here, we identify the SNARE Sec22b as a specific regulator of Ag crosspresentation. Sec22b localizes to the ER-Golgi intermediate compartment (ERGIC) and pairs to the plasma membrane SNARE syntaxin 4, which is present in phagosomes (Phgs). Depletion of Sec22b inhibits the recruitment of ER-resident proteins to Phgs and to the vacuole containing the Toxoplasma gondii parasite. In Sec22b-deficient DCs, crosspresentation is compromised after Ag phagocytosis or endocytosis and after invasion by T. gondii. Sec22b silencing inhibited Ag export to the cytosol and increased phagosomal degradation by accelerating lysosomal recruitment. Our findings provide insight into an intracellular traffic pathway required for crosspresentation and show that Sec22b-dependent recruitment of ER proteins to Phgs critically influences phagosomal functions in DCs.


Subject(s)
Antigen Presentation , Dendritic Cells/immunology , Escherichia coli Infections/immunology , Escherichia coli , Phagosomes/immunology , R-SNARE Proteins/metabolism , Toxoplasma , Toxoplasmosis/immunology , Animals , Cross Reactions , Dendritic Cells/cytology , Mice , Mice, Inbred C57BL
12.
Proc Natl Acad Sci U S A ; 120(2): e2213056120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595686

ABSTRACT

Despite the essential role of plasma cells in health and disease, the cellular mechanisms controlling their survival and secretory capacity are still poorly understood. Here, we identified the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Sec22b as a unique and critical regulator of plasma cell maintenance and function. In the absence of Sec22b, plasma cells were hardly detectable and serum antibody titers were dramatically reduced. Accordingly, Sec22b-deficient mice fail to mount a protective immune response. At the mechanistic level, we demonstrated that Sec22b contributes to efficient antibody secretion and is a central regulator of plasma cell maintenance through the regulation of their transcriptional identity and of the morphology of the endoplasmic reticulum and mitochondria. Altogether, our results unveil an essential and nonredundant role for Sec22b as a regulator of plasma cell fitness and of the humoral immune response.


Subject(s)
Plasma Cells , SNARE Proteins , Mice , Animals , Plasma Cells/metabolism , R-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Endoplasmic Reticulum/metabolism , Biological Transport
13.
Immunity ; 43(6): 1087-100, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26682983

ABSTRACT

The initiation of cytotoxic immune responses by dendritic cells (DCs) requires the presentation of antigenic peptides derived from phagocytosed microbes and infected or dead cells to CD8(+) T cells, a process called cross-presentation. Antigen cross-presentation by non-activated DCs, however, is not sufficient for the effective induction of immune responses. Additionally, DCs need to be activated through innate receptors, like Toll-like receptors (TLRs). During DC maturation, cross-presentation efficiency is first upregulated and then turned off. Here we show that during this transient phase of enhanced cross-presentation, phago-lysosome fusion was blocked by the topological re-organization of lysosomes into perinuclear clusters. LPS-induced lysosomal clustering, inhibition of phago-lysosome fusion and enhanced cross-presentation, all required expression of the GTPase Rab34. We conclude that TLR4 engagement induces a Rab34-dependent re-organization of lysosomal distribution that delays antigen degradation to transiently enhance cross-presentation, thereby optimizing the priming of CD8(+) T cell responses against pathogens.


Subject(s)
Antigen Presentation/immunology , Cross-Priming/immunology , Dendritic Cells/immunology , Toll-Like Receptor 4/immunology , Animals , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Female , Flow Cytometry , Lysosomes/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phagosomes/immunology , RNA, Small Interfering , Transfection , rab GTP-Binding Proteins/immunology
14.
Proc Natl Acad Sci U S A ; 117(14): 7905-7916, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32193341

ABSTRACT

Transposable elements (TEs) compose nearly half of mammalian genomes and provide building blocks for cis-regulatory elements. Using high-throughput sequencing, we show that 84 TE subfamilies are overrepresented, and distributed in a lineage-specific fashion in core and boundary domains of CD8+ T cell enhancers. Endogenous retroviruses are most significantly enriched in core domains with accessible chromatin, and bear recognition motifs for immune-related transcription factors. In contrast, short interspersed elements (SINEs) are preferentially overrepresented in nucleosome-containing boundaries. A substantial proportion of these SINEs harbor a high density of the enhancer-specific histone mark H3K4me1 and carry sequences that match enhancer boundary nucleotide composition. Motifs with regulatory features are better preserved within enhancer-enriched TE copies compared to their subfamily equivalents located in gene deserts. TE-rich and TE-poor enhancers associate with both shared and unique gene groups and are enriched in overlapping functions related to lymphocyte and leukocyte biology. The majority of T cell enhancers are shared with other immune lineages and are accessible in common hematopoietic progenitors. A higher proportion of immune tissue-specific enhancers are TE-rich compared to enhancers specific to other tissues, correlating with higher TE occurrence in immune gene-associated genomic regions. Our results suggest that during evolution, TEs abundant in these regions and carrying motifs potentially beneficial for enhancer architecture and immune functions were particularly frequently incorporated by evolving enhancers. Their putative selection and regulatory cooption may have accelerated the evolution of immune regulatory networks.


Subject(s)
DNA Transposable Elements/genetics , Enhancer Elements, Genetic/genetics , Evolution, Molecular , T-Lymphocytes/immunology , Animals , Chromatin/genetics , Chromatin/immunology , DNA Transposable Elements/immunology , Endogenous Retroviruses/genetics , Endogenous Retroviruses/immunology , Enhancer Elements, Genetic/immunology , Gene Regulatory Networks/genetics , Genome, Human/genetics , Genome, Human/immunology , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Short Interspersed Nucleotide Elements/genetics , Short Interspersed Nucleotide Elements/immunology
15.
Immunity ; 38(2): 336-48, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23352235

ABSTRACT

Dendritic cells (DCs) are critical regulators of immune responses. Under noninflammatory conditions, several human DC subsets have been identified. Little is known, however, about the human DC compartment under inflammatory conditions. Here, we characterize a DC population found in human inflammatory fluids that displayed a phenotype distinct from macrophages from the same fluids and from steady-state lymphoid organ and blood DCs. Transcriptome analysis showed that they correspond to a distinct DC subset and share gene signatures with in vitro monocyte-derived DCs. Moreover, human inflammatory DCs, but not inflammatory macrophages, stimulated autologous memory CD4(+) T cells to produce interleukin-17 and induce T helper 17 (Th17) cell differentiation from naive CD4(+) T cells through the selective secretion of Th17 cell-polarizing cytokines. We conclude that inflammatory DCs represent a distinct human DC subset and propose that they are derived from monocytes and are involved in the induction and maintenance of Th17 cell responses.


Subject(s)
Dendritic Cells/pathology , Inflammation/pathology , Interleukin-17/immunology , Macrophages/pathology , Monocytes/pathology , Th17 Cells/pathology , CD4 Antigens/genetics , CD4 Antigens/immunology , Cell Differentiation , Cells, Cultured , Dendritic Cells/immunology , Humans , Immunologic Memory , Inflammation/genetics , Inflammation/immunology , Interleukin-17/biosynthesis , Lymphocyte Activation , Macrophages/immunology , Monocytes/immunology , Organ Specificity , Signal Transduction , Th1-Th2 Balance , Th17 Cells/immunology , Transcriptome/immunology
16.
Proc Natl Acad Sci U S A ; 116(51): 25839-25849, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31776254

ABSTRACT

Naive CD4+ T lymphocytes differentiate into different effector types, including helper and regulatory cells (Th and Treg, respectively). Heritable gene expression programs that define these effector types are established during differentiation, but little is known about the epigenetic mechanisms that install and maintain these programs. Here, we use mice defective for different components of heterochromatin-dependent gene silencing to investigate the epigenetic control of CD4+ T cell plasticity. We show that, upon T cell receptor (TCR) engagement, naive and regulatory T cells defective for TRIM28 (an epigenetic adaptor for histone binding modules) or for heterochromatin protein 1 ß and γ isoforms (HP1ß/γ, 2 histone-binding factors involved in gene silencing) fail to effectively signal through the PI3K-AKT-mTOR axis and switch to glycolysis. While differentiation of naive TRIM28-/- T cells into cytokine-producing effector T cells is impaired, resulting in reduced induction of autoimmune colitis, TRIM28-/- regulatory T cells also fail to expand in vivo and to suppress autoimmunity effectively. Using a combination of transcriptome and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses for H3K9me3, H3K9Ac, and RNA polymerase II, we show that reduced effector differentiation correlates with impaired transcriptional silencing at distal regulatory regions of a defined set of Treg-associated genes, including, for example, NRP1 or Snai3. We conclude that TRIM28 and HP1ß/γ control metabolic reprograming through epigenetic silencing of a defined set of Treg-characteristic genes, thus allowing effective T cell expansion and differentiation into helper and regulatory phenotypes.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Chromosomal Proteins, Non-Histone/metabolism , Epigenesis, Genetic/physiology , T-Lymphocytes/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Animals , Autoimmunity/physiology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Plasticity/physiology , Cellular Reprogramming/genetics , Chromobox Protein Homolog 5 , Colon/pathology , Cytokines/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Gene Silencing , Histones/metabolism , Mice , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transcriptome , Tripartite Motif-Containing Protein 28/genetics
17.
Nature ; 584(7822): 533-534, 2020 08.
Article in English | MEDLINE | ID: mdl-32788699
18.
Proc Natl Acad Sci U S A ; 114(29): E5910-E5919, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28679634

ABSTRACT

Although antigen cross-presentation in dendritic cells (DCs) is critical to the initiation of most cytotoxic immune responses, the intracellular mechanisms and traffic pathways involved are still unclear. One of the most critical steps in this process, the export of internalized antigen to the cytosol, has been suggested to be mediated by Sec61. Sec61 is the channel that translocates signal peptide-bearing nascent polypeptides into the endoplasmic reticulum (ER), and it was also proposed to mediate protein retrotranslocation during ER-associated degradation (a process called ERAD). Here, we used a newly identified Sec61 blocker, mycolactone, to analyze Sec61's contribution to antigen cross-presentation, ERAD, and transport of internalized antigens into the cytosol. As shown previously in other cell types, mycolactone prevented protein import into the ER of DCs. Mycolactone-mediated Sec61 blockade also potently suppressed both antigen cross-presentation and direct presentation of synthetic peptides to CD8+ T cells. In contrast, it did not affect protein export from the ER lumen or from endosomes into the cytosol, suggesting that the inhibition of cross-presentation was not related to either of these trafficking pathways. Proteomic profiling of mycolactone-exposed DCs showed that expression of mediators of antigen presentation, including MHC class I and ß2 microglobulin, were highly susceptible to mycolactone treatment, indicating that Sec61 blockade affects antigen cross-presentation indirectly. Together, our data suggest that the defective translocation and subsequent degradation of Sec61 substrates is the cause of altered antigen cross-presentation in Sec61-blocked DCs.


Subject(s)
Antigen Presentation/physiology , Endosomes/metabolism , Macrolides/pharmacology , SEC Translocation Channels/metabolism , Animals , Antigen Presentation/drug effects , Cell Line , Cytosol/drug effects , Cytosol/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Endoplasmic Reticulum-Associated Degradation/drug effects , Endosomes/drug effects , HEK293 Cells , Humans , Mice , Protein Transport/drug effects , SEC Translocation Channels/antagonists & inhibitors
19.
Immunol Rev ; 272(1): 97-108, 2016 07.
Article in English | MEDLINE | ID: mdl-27319345

ABSTRACT

As a population, dendritic cells (DCs) appear to be the best cross-presenters of internalized antigens on major histocompatibility complex class I molecules in the mouse. To do this, DCs have developed a number of unique and dedicated means to control their endocytic and phagocytic pathways: among them, the capacity to limit acidification of their phagosomes, to prevent proteolytic degradation, to delay fusion of phagosomes to lysosomes, to recruit ER proteins to phagosomes, and to export phagocytosed antigens to the cytosol. The regulation of phagocytic functions, and thereby of antigen processing and presentation by innate signaling, represents a critical level of integration of adaptive and innate immune responses. Understanding how innate signals control antigen cross-presentation is critical to define effective vaccination strategies for CD8(+) T-cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cross-Priming , Dendritic Cells/immunology , Phagocytosis , Adaptive Immunity , Animals , Exophthalmos , Histocompatibility Antigens Class I/metabolism , Humans , Immunity, Innate , Lymphocyte Activation
20.
Immunity ; 32(2): 266-78, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20137985

ABSTRACT

Regulatory T (Treg) cells limit the onset of effective antitumor immunity, through yet-ill-defined mechanisms. We showed the rejection of established ovalbumin (OVA)-expressing MCA101 tumors required both the adoptive transfer of OVA-specific CD8(+) T cell receptor transgenic T cells (OTI) and the neutralization of Foxp3(+) T cells. In tumor-draining lymph nodes, Foxp3(+) T cell neutralization induced a marked arrest in the migration of OTI T cells, increased numbers of dendritic cells (DCs), and enhanced OTI T cell priming. Using an in vitro cytotoxic assay and two-photon live microscopy after adoptive transfer of DCs, we demonstrated that Foxp3(+) T cells induced the death of DCs in tumor-draining lymph nodes, but not in the absence of tumor. DC death correlated with Foxp3(+) T cell-DC contacts, and it was tumor-antigen and perforin dependent. We conclude that Foxp3(+) T cell-dependent DC death in tumor-draining lymph nodes limits the onset of CD8(+) T cell responses.


Subject(s)
Dendritic Cells/metabolism , Fibrosarcoma/immunology , Perforin/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Adhesion , Cell Death , Cell Line, Tumor , Cell Movement , Dendritic Cells/immunology , Dendritic Cells/pathology , Female , Fibrosarcoma/pathology , Forkhead Transcription Factors/biosynthesis , Lymph Nodes/pathology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasm Transplantation , Perforin/genetics , Perforin/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL