Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Arch Pharm (Weinheim) ; : e2400439, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079940

ABSTRACT

We synthesized herein 16 compounds (SUT1-SUT16) as potential carbonic anhydrase (CA) inhibitors utilizing the tail-approach design. Based on this strategy, we connected benzenesulfonamide, the zinc-binding scaffold, to different urea moieties with the 1,3,4-thiadiazole ring as a linker. We obtained the target compounds by the reaction of 4-(5-amino-1,3,4-thiadiazol-2-yl)benzenesulfonamide with aryl isocyanates. Upon confirmation of their structures, the compounds were screened for their ability to inhibit the tumor-related human (h) isoforms human carbonic anhydrase (hCA) IX and XII, as well as the physiologically dominant hCA I and II. Most of the molecules demonstrated Ki values ≤ 10 nM with different selectivity profiles. The binding modes of SUT9, SUT10, and SUT5, the most effective inhibitors of hCA II, IX, and XII, respectively, were predicted by molecular docking. SUT16 (4-{5-[3-(naphthalen-1-yl)ureido]-1,3,4-thiadiazol-2-yl}benzenesulfonamide) was found to be the most selective inhibitor of the cancer-associated isoforms hCA IX and XII over the off-target isoforms, hCAI and II. The interaction dynamics and stability of SUT16 within hCA IX and XII were investigated by molecular dynamics simulations as well as dynophore analysis. Based on computational data, increased hydrophobic contacts and hydrogen bonds in the tail part of these molecules within hCA IX and XII were found as favorable interactions leading to effective inhibitors of cancer-related isoforms.

2.
Arch Pharm (Weinheim) ; 357(7): e2400064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38498883

ABSTRACT

With the rise of multidrug-resistant tuberculosis, the imperative for an alternative and superior treatment regimen, incorporating novel mechanisms of action, has become crucial. In pursuit of this goal, we have developed and synthesized a new series of rhodanine-linked enamine-carbohydrazide derivatives, exploring their potential as inhibitors of mycobacterial carbonic anhydrase. The findings reveal their efficacy, displaying notable selectivity toward the mycobacterial carbonic anhydrase 2 (mtCA 2) enzyme. While exhibiting moderate activity against human carbonic anhydrase isoforms, this series demonstrates promising selectivity, positioning these compounds as potential antitubercular agents. Compound 6d was the best one from the series with a Ki value of 9.5 µM toward mtCA 2. Most of the compounds displayed moderate to good inhibition against the Mtb H37Rv strain; compound 11k showed a minimum inhibitory concentration of 1 µg/mL. Molecular docking studies revealed that compounds 6d and 11k show metal coordination with the zinc ion, like classical CA inhibitors.


Subject(s)
Antitubercular Agents , Carbonic Anhydrase Inhibitors , Drug Design , Hydrazines , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Rhodanine , Rhodanine/pharmacology , Rhodanine/chemical synthesis , Rhodanine/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Structure-Activity Relationship , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Humans , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Hydrazines/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism
3.
J Enzyme Inhib Med Chem ; 38(1): 2191163, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36942698

ABSTRACT

As part of our ongoing endeavour to identify novel inhibitors of cancer-associated CA isoforms IX and XII as possible anticancer candidates, here we describe the design and synthesis of small library of 2-aryl-quinazolin-4-yl aminobenzoic acid derivatives (6a-c, 7a-c, and 8a-c) as new non-classical CA inhibitors. On account of its significance in the anticancer drug discovery and in the development of effective CAIs, the 4-anilinoquinazoline privileged scaffold was exploited in this study. Thereafter, the free carboxylic acid functionality was appended in the ortho (6a-c), meta (7a-c), or para-positon (8a-c) of the anilino motif to furnish the target inhibitors. All compounds were assessed for their inhibitory activities against the hCA I, II (cytosolic), IX, and XII (trans-membrane, tumour-associated) isoforms. Moreover, six quinazolines (6a-c, 7b, and 8a-b) were chosen by the NCI-USA for in vitro anti-proliferative activity evaluation against 59 human cancer cell lines representing nine tumour subpanels.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Carbonic Anhydrase IX , Molecular Structure , Structure-Activity Relationship , Carbonic Anhydrases/metabolism , Carboxylic Acids/pharmacology , Carbonic Anhydrase Inhibitors , Quinazolines/pharmacology , Neoplasms/pathology , Antigens, Neoplasm/metabolism
4.
Future Med Chem ; 16(13): 1347-1355, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39109432

ABSTRACT

Aim: A series of isocoumarin-chalcone hybrids were prepared and assays for the inhibition of four isoforms of human carbonic anhydrase (hCA; EC 4.2.1.1), hCA I, II, IX and XII. Materials & methods: Isocoumarin-chalcone hybrids were synthesized by condensing acetyl-isocoumarin with aromatic aldehydes. They did not significantly inhibit off-target cytosolic isoforms hCA I and II (KI >100 µM) but acted as low micromolar or submicromolar inhibitors for the tumor-associated isoforms hCA IX and XII. Results & conclusion: Our work provides insights into a new and scarcely investigated chemotype which provides interesting tumor-associated CA inhibitors, considering that some such derivatives like sulfonamide SLC-0111 are in advanced clinical trials for the management of metastatic advanced solid tumors.


A series of isocoumarin­chalcone hybrids was prepared and assays for the inhibition of four isoforms of the metalloenzyme carbonic anhydrase (CA; EC 4.2.1.1), i.e., human (h) isoforms hCA I, II, IX and XII. Isocoumarins were less investigated as inhibitors of this enzyme. Here we show that the isocoumarin­chalcone hybrids do not significantly inhibit the off-target cytosolic isoforms hCA I and II (KIs >100 µM) but act as low micromolar inhibitors for the tumor-associated isoforms hCA IX and XII. Our work thus provides insights into a new and scarcely investigated chemotype which may provide interesting tumor-associated CA inhibitors, because some such compounds, e.g., the sulfonamide SLC-0111, are presently in advanced clinical trials for the management of metastatic advanced solid tumors.


Subject(s)
Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Isocoumarins , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Humans , Carbonic Anhydrases/metabolism , Isocoumarins/chemistry , Isocoumarins/pharmacology , Isocoumarins/chemical synthesis , Chalcone/chemistry , Chalcone/pharmacology , Structure-Activity Relationship , Isoenzymes/metabolism , Isoenzymes/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Molecular Structure , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis
5.
Int J Biol Macromol ; 279(Pt 2): 135010, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197616

ABSTRACT

In today's medical field, there is a growing trend of exploiting a single small molecule to target two different molecular targets concurrently. This approach is proving to be highly effective in fighting against cancer. The 4-anilinoquinazoline scaffold, known for its potential in cancer therapy and its effectiveness as a leading class of tyrosine kinase inhibitors, was employed to develop a novel series of anilinoquinazoline-sulfonamides (AQSs) (8a-d, 9a-f, and 10a-d) as dual inhibitors of the tumor-associated carbonic anhydrases (CA) IX/XII and EGFR. 2-(3-Methoxyphenyl)quinazoline bearing p-sulfanilamide 10b elicited superior hCA IX and XII inhibition in the low nanomolar range (KIs = 38.4 and 8.9 nM, respectively). Also, 10b shined as a potent and selective EGFR inhibitor, boasting an impressive IC50 value of 51.2 ± 0.97 nM, surpassing the reference EGFR inhibitor Erlotinib (IC50 = 80 ± 2.0 nM). Compound 10b exhibited broadest-spectrum antiproliferative activity against the NCI-tumor panel with a mean GI% value of 68 %. Of special interest, 10b demonstrated potent growth inhibition (GI% ≥ 80-97 %) toward cell lines reported to express high levels of EGFR belonging to renal, colon, breast, and lung cancers. Compound 10b's molecular docking in the CA IX/XII and EGFR active sites revealed binding modes that justify its potent enzyme inhibitory effects. Additionally, molecular dynamic simulations demonstrated strong and stable interactions of 10b with the binding sites of these targets.

6.
J Med Chem ; 67(18): 16873-16898, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39283654

ABSTRACT

This study introduces a novel multitargeting strategy that combines carbonic anhydrase (CA) activators and cholinesterase (ChE) inhibitors to enhance cognitive functions. A series of tacrine-based derivatives with amine/amino acid moieties were synthesized and evaluated for their dual activity on brain CA isoforms and ChEs (AChE and BChE). Several derivatives, notably compounds 26, 30, 34, and 40, demonstrated potent CA activation, particularly of hCA II and VII, and strong ChE inhibition with subnanomolar to low nanomolar IC50 values. In vivo studies using a mouse model of social recognition memory showed that these derivatives significantly improved memory consolidation at doses 10-100 times lower than the reference compounds (either alone or in combination). Molecular modeling and ADMET predictions elucidated the compound binding modes and confirmed favorable pharmacokinetic and safety profiles. The findings suggest that dual modulation of CA and ChE activities is a promising strategy for treating cognitive deficits associated with neurodegenerative and psychiatric disorders.


Subject(s)
Brain , Cholinesterase Inhibitors , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Brain/metabolism , Brain/drug effects , Mice , Humans , Carbonic Anhydrases/metabolism , Memory/drug effects , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Structure-Activity Relationship , Tacrine/pharmacology , Tacrine/chemistry , Male , Acetylcholinesterase/metabolism , Models, Molecular , Cholinesterases/metabolism
7.
Eur J Med Chem ; 274: 116527, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38810335

ABSTRACT

Herein, we describe the design and synthesis of novel aryl pyrimidine benzenesulfonamides APBSs 5a-n, 6a-c, 7a-b, and 8 as pazopanib analogues to explore new potent and selective inhibitors for the CA IX. All APBSs were examined in vitro for their promising inhibition activity against a small panel of hCAs (isoforms I, II, IX, and XII). The X-ray crystal structure of CA I in adduct with a representative APBS analogue was solved. APBS-5m, endowed with the best hCA IX inhibitory efficacy and selectivity, was evaluated for antiproliferative activity against a small panel of different cancer cell lines, SK-MEL-173, MDA-MB-231, A549, HCT-116, and HeLa, and it demonstrated one-digit IC50 values range from 2.93 µM (MDA-MB-231) to 5.86 µM (A549). Furthermore, compound APBS-5m was evaluated for its influence on hypoxia-inducible factor (HIF-1α) production, apoptosis induction, and colony formation in MDA-MB-231 cancer cells. The in vivo efficacy of APBS-5m as an antitumor agent was additionally investigated in an animal model of Solid Ehrlich Carcinoma (SEC). In order to offer perceptions into the conveyed hCA IX inhibitory efficacy and selectivity in silico, a molecular docking investigation was also carried out.


Subject(s)
Antineoplastic Agents , Carbonic Anhydrase Inhibitors , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Indazoles , Pyrimidines , Sulfonamides , Humans , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Indazoles/pharmacology , Indazoles/chemical synthesis , Indazoles/chemistry , Cell Proliferation/drug effects , Animals , Structure-Activity Relationship , Crystallography, X-Ray , Molecular Structure , Dose-Response Relationship, Drug , Mice , Cell Line, Tumor , Drug Repositioning
8.
J Med Chem ; 67(11): 9613-9627, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38776401

ABSTRACT

The development of antibacterial drugs with new mechanisms of action is crucial in combating the rise of antibiotic-resistant infections. Bacterial carbonic anhydrases (CAs, EC 4.2.1.1) have been validated as promising antibacterial targets against pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, and vancomycin-resistant enterococci. A multitarget strategy is proposed to design penicillin-based CA inhibitor hybrids for tackling resistance by targeting multiple bacterial pathways, thereby resensitizing drug-resistant strains to clinical antibiotics. The sulfonamide derivatives potently inhibited the CAs from N. gonorrhoeae and Escherichia coli with KI values in the range of 7.1-617.2 nM. Computational simulations with the main penicillin-binding protein (PBP) of N. gonorrhoeae indicated that these hybrid derivatives maintained the mechanism of action of the lead ß-lactams. A subset of derivatives showed potent PBP-related antigonococcal effects against multidrug-resistant N. gonorrhoeae strains, with several compounds significantly outperforming both the lead ß-lactam and CA inhibitor drugs (MIC values in the range 0.25 to 0.5 µg/mL).


Subject(s)
Anti-Bacterial Agents , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Microbial Sensitivity Tests , Neisseria gonorrhoeae , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/enzymology , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Carbonic Anhydrases/metabolism , Penicillins/pharmacology , Penicillins/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Structure-Activity Relationship , Humans , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Molecular Structure , Escherichia coli/drug effects , Escherichia coli/enzymology
9.
J Med Chem ; 67(2): 1611-1623, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38207099

ABSTRACT

As a progressive neuropathic condition, glaucoma can cause lifelong blindness if left untreated. Novel phenylpyridazine-tethered sulfonamides were designed as selective inhibitors for carbonic anhydrase (CA) isoform II to find effective therapeutic agents for glaucoma. Subsequently, the target inhibitors were synthesized and assessed for their inhibitory action against cytosolic CA I and II. Interestingly, the synthesized molecules poorly inhibited CA I while exhibiting low subnanomolar potency against CA II. Compound 7c disclosed the most potent activity (IC50 = 0.63 nM) with high selectivity against CA II (605-fold than acetazolamide selectivity). Moreover, compound 7c also showed significant in vivo IOP-reducing properties in the in vivo model of glaucoma. Furthermore, the binding of compound 7c to CA II was assessed at the molecular level, exploiting the molecular docking approach.


Subject(s)
Glaucoma , Sulfonamides , Humans , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Sulfonamides/chemistry , Carbonic Anhydrase II , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Carbonic Anhydrase Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Glaucoma/drug therapy , Sulfanilamide , Carbonic Anhydrase IX/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL