Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Plants (Basel) ; 12(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687371

ABSTRACT

Fruits and vegetables are generally known to contain important vitamins, fiber, essential minerals, and vital bioactive compounds that possess health benefits such as anti-inflammatory, antimicrobial, antioxidant, and anticancer properties [...].

2.
Ultrason Sonochem ; 84: 105955, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35220179

ABSTRACT

The present-day consumer is not only conscious of the relationship between food consumption and positive health, but also keen on environmental sustainability. Thus, the demand for plant-based proteins, which are associated with nutrition and environmental sustainability. However, the plant-based protein industry still demands urgent innovation due to the low yield and long extraction time linked with traditional extraction methods. Although ultrasound is an eco-innovative technique, there exist limited data regarding its impact with plant-based protein. In this paper, the scientific principles of ultrasonication with regards to its application in plant-based protein research were reviewed. After comparing the cavitational and shearing impacts of different ultrasonic parameters, the paper further reviewed its effects on extracted protein characteristics and techno-functional properties. Additionally, current technological challenges and future perspectives of ultrasonication for the plant-based protein industry were also discussed. In summary, this review does not only present the novelty and environmental sustainability of ultrasound as a plant-based protein assisted-extraction method, but also highlights on the correlation between protein source, structure and subsequent functional properties which are important crucial factors for maximum application of ultrasound in the growing plant-based protein market.


Subject(s)
Plant Proteins , Technology , Chemical Phenomena , Industry
3.
Foods ; 11(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35741941

ABSTRACT

Global population is estimated to reach about 9.22 billion by 2075. The increasing knowledge on the relationship between food biochemistry and positive health gives an indication of the urgency to exploit food resources that are not only sustainable but also impact human health beyond basic nutrition. A typical example of such novel food is microalgae, an aquatic microorganism with a plethora of diverse bioactive compounds including phenolics, carotenoids, vitamin B12 and peptides. Microalgal bioactive compounds have been shown to possess positive health effects such as antihypertensive, anti-obesity, antioxidative, anticancer and cardiovascular protection. Although, the utilization of microalgal biomass by the functional food industry has faced lots of challenges because of species diversity and variations in biomass and cultivation factors. Other documented challenges were ascribed to changes in functional structures during extraction and purification due to inefficient bio-processing techniques, inconclusive literature information on the bioavailability and safety of the microalgal bioactive compounds and the fishy odor and taste when applied in food formulations. In spite of these challenges, great opportunities exist to exploit their utilization for the development of functional foods. Microalgae are a renewable resource and have fast growth rate. Therefore, detailed research is needed to bridge these challenges to pave way for large-scale commercialization of microalgal-based healthy foods. The focus of this review is to discuss the potential of microalgae as natural ingredients for functional food development, factors limiting their acceptance and utilization in the food industry as well as their safety concerns with respect to human consumption.

4.
Ultrason Sonochem ; 91: 106237, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36446157

ABSTRACT

In this study, batters formulated with different hydrocolloids (i.e., pectin, locust bean gum, xanthan gum, guar gum, hydroxypropyl methylcellulose and methylcellulose) were treated with ultrasound as edible coatings for fried chicken nuggets. Quality characteristics (i.e., batter pickup, flow behaviours, thermal properties, moisture loss, color and textural properties) in chicken nuggets coated with ultrasound treated batters were evaluated before and after post frying exposure to heat lamp. Ultrasonication significantly reduced batter pickup, flow behavior and gelatinization enthalpy, revealing its tendency to alter functional properties of batter systems. Rheological evaluation of all batter samples revealed a pseudoplastic (shear thinning) flow characteristic when fitted to power law model, with ultrasonicated (US) samples exhibiting a significantreduction in viscosity over non-ultrasonicated (NUS) samples. Compared to the control NUS, fat content of chicken nuggets coated with US-treated batters decreased by 39.0, 60.9, 62.87, 64.1, 65.7, and 65.0 % for pectin, locust bean gum, xanthan gum, guar gum, hydroxypropyl methylcellulose and methylcellulose, respectively. Finally, chicken nuggets coated with US and NUS treated batters exhibited greater cutting force values immediately after frying but declined within the first 10 min of heat lamp exposure and increased subsequently with extended heat lamp holding time. Furthermore, NUS-treated guar gum resulted in chicken nuggets with the most minimal variability in cutting force during post-frying holding, indicating that crispiness was maintained. Overall, application of ultrasound as a batter pretreatment technique can be exploited by the frying food industry as an alternative approach to producing low fat chicken nuggets with appreciable quality attributes.


Subject(s)
Chickens , Animals , Hypromellose Derivatives , Rheology
5.
Foods ; 11(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36230227

ABSTRACT

The impact of storage temperature and time on quality of two walnut cultivars (Juglans regia Chandler and Howard) were evaluated. Free fatty acids, peroxides, and oxidative stabilities exhibited significant changes. After the storage period, γ-, δ-, and α-tocopherols in Howard oil significantly reduced by 42, 56, and 100% at 5 °C, while 23 °C showed 48, 42, and 100% losses, respectively. For Chandler oil, storage at 5 °C reduced γ-, δ-, and α-tocopherols by 19, 24, and 100%, while 23 °C caused 42, 45, and 100% losses, respectively. Storage of Howard kernels, up to month four, significantly reduced total phenolics by 9 and 18%, at 23 and 5 °C, respectively, whereas Chandler also reduced by 9 and 27%, at 23 and 5 °C, respectively. Additionally, 14 phenolic compounds were profiled in kernels, where flavonoids were dominant than phenolic acids. At the end of month four, the dominant phenolic compound was gallic acid at 23 °C (981.68 and 703 mg/kg for Chandler and Howard, respectively). Additionally, positive correlations were observed between rancid sensory perceptions and oxidative volatiles. Storage conditions are crucial for maintaining the sensory and nutritional attributes of walnuts during postharvest management.

6.
Plants (Basel) ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432882

ABSTRACT

The benefit sof municipal solid waste (MSW) compost on soil health and plant productivity are well known, but not its long-term effect on soil microbial and plant metabolic pathways. A 5-year study with annual (AN), biennial (BI) and no (C, control) MSW compost application were carried out to determine the effect on soil properties, microbiome function, and plantgrowth and TCA cycle metabolites profile of green beans (Phaseolus vulgaris), lettuce (Latuca sativa) and beets (Beta vulgaris). MSW compost increased soil nutrients and organic matter leading to a significant (p < 0.05) increase in AN-soil water-holding capacity followed by BI-soil compared to C-soil. Estimated nitrogen release in the AN-soil was ca. 23% and 146% more than in BI-soil and C-soil, respectively. Approximately 44% of bacterial community due to compost. Deltaproteobacteria, Bacteroidetes Bacteroidia, and Chloroflexi Anaerolineae were overrepresented in compost amended soils compared to C-soil. A strong positive association existed between AN-soil and 18 microbial metabolic pathways out of 205. Crop yield in AN-soil were increased by 6−20% compared to the BI-soil, and by 35−717% compared to the C-soil. Plant tricarboxylic acid cycle metabolites were highly (p < 0.001) influenced by compost. Overall, microbiome function and TCA cycle metabolites and crop yield were increased in the AN-soil followed by the BI-soil and markedly less in C-soil. Therefore, MSW compost is a possible solution to increase soil health and plants production in the medium to long term. Future study must investigate rhizosphere metabolic activities.

7.
Ultrason Sonochem ; 64: 104974, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32044682

ABSTRACT

Limited literature is available concerning the phenolic biosynthesis and antioxidative potential of common bean sprouts induced by ultrasound elicitation. In this study, common bean seeds were treated with ultrasound at different power (0, 180 and 360 W) and time (0, 30, 45 and 60 min) levels, before they were subjected to sprouting (24, 48, 72 and 96 h). Stress markers (H2O2, catalase and guaiacol peroxidase), activities of defense phenolic triggering enzymes (phenylalanine ammonia-lyase and tyrosine ammonia-lyase), phenolic contents (total phenolic acids, total flavonoids and anthocyanins) and antioxidant capacities (DPPH, ABTS and Fe2+ scavenging) were monitored. Results showed that, ultrasound elicitation (especially 360 W, 60 min) significantly increased accumulation of stress markers at 96 h of sprouting, leading to elevated activities of defense phenolic triggering enzymes, and final accumulation of phenolics and antioxidant capacities at significant levels compared to control. Ultrasound treatment at 360 W and 60 min reduced sprouting time by 60 h, compared to control. Results from principal component analysis clearly differentiated latter stages of sprouting and high ultrasound levels from other sprouting conditions as distinct treatments for the production of phenolic-rich common bean sprouts. Overall, results from this study indicated that elicitation with ultrasound can be a green and novel approach for producing phenolic-enriched common bean sprouts as an organic nutraceutical vegetable.


Subject(s)
Antioxidants/metabolism , Phaseolus/growth & development , Phaseolus/metabolism , Phenols/metabolism , Ultrasonic Waves , Catalase/metabolism , Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL