Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Plant Cell ; 33(3): 603-622, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33955492

ABSTRACT

In wheat (Triticum aestivum L.), breeding efforts have focused intensively on improving grain yield and quality. For quality, the content and composition of seed storage proteins (SSPs) determine the elasticity of wheat dough and flour processing quality. Moreover, starch levels in seeds are associated with yield. However, little is known about the mechanisms that coordinate SSP and starch accumulation in wheat. In this study, we explored the role of the endosperm-specific NAC transcription factor TaNAC019 in coordinating SSP and starch accumulation. TaNAC019 binds to the promoters of TaGlu-1 loci, encoding high molecular weight glutenin (HMW-GS), and of starch metabolism genes. Triple knock-out mutants of all three TaNAC019 homoeologs exhibited reduced transcript levels for all SSP types and genes involved in starch metabolism, leading to lower gluten and starch contents, and in flour processing quality parameters. TaNAC019 directly activated the expression of HMW-GS genes by binding to a specific motif in their promoters and interacting with the TaGlu-1 regulator TaGAMyb. TaNAC019 also indirectly regulated the expression of TaSPA, an ortholog of maize Opaque2 that activates SSP accumulation. Therefore, TaNAC019 regulation of starch- and SSP-related genes has key roles in wheat grain quality. Finally, we identified an elite allele (TaNAC019-BI) associated with flour processing quality, providing a candidate gene for breeding wheat with improved quality.


Subject(s)
Endosperm/metabolism , Plant Proteins/metabolism , Starch/metabolism , Transcription Factors/metabolism , Alleles , Endosperm/genetics , Glutens/genetics , Glutens/metabolism , Plant Proteins/genetics , Starch/genetics , Transcription Factors/genetics , Triticum/genetics , Triticum/metabolism
2.
Plant Physiol ; 186(4): 1951-1969, 2021 08 03.
Article in English | MEDLINE | ID: mdl-33890670

ABSTRACT

Polyploidy occurs prevalently and plays an important role during plant speciation and evolution. This phenomenon suggests polyploidy could develop novel features that enable them to adapt wider range of environmental conditions compared with diploid progenitors. Bread wheat (Triticum aestivum L., BBAADD) is a typical allohexaploid species and generally exhibits greater salt tolerance than its tetraploid wheat progenitor (BBAA). However, little is known about the underlying molecular basis and the regulatory pathway of this trait. Here, we show that the histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Salinity-induced TaHAG1 expression was associated with tolerance variation in polyploidy wheat. Overexpression, silencing, and CRISPR-mediated knockout of TaHAG1 validated the role of TaHAG1 in salinity tolerance of wheat. TaHAG1 contributed to salt tolerance by modulating reactive oxygen species (ROS) production and signal specificity. Moreover, TaHAG1 directly targeted a subset of genes that are responsible for hydrogen peroxide production, and enrichment of TaHAG1 triggered increased H3 acetylation and transcriptional upregulation of these loci under salt stress. In addition, we found the salinity-induced TaHAG1-mediated ROS production pathway is involved in salt tolerance difference of wheat accessions with varying ploidy. Our findings provide insight into the molecular mechanism of how an epigenetic regulatory factor facilitates adaptability of polyploidy wheat and highlights this epigenetic modulator as a strategy for salt tolerance breeding in bread wheat.


Subject(s)
Histone Acetyltransferases/genetics , Plant Proteins/genetics , Polyploidy , Salt Tolerance/genetics , Triticum/physiology , Histone Acetyltransferases/metabolism , Plant Breeding , Plant Proteins/metabolism , Triticum/enzymology , Triticum/genetics
3.
Appl Microbiol Biotechnol ; 106(19-20): 6583-6593, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36109386

ABSTRACT

The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas9) system is a powerful genome editing tool that has been successfully established in some filamentous fungi due to its high flexibility and efficiency. However, the potential toxicity of Cas9 restricts the further popularization and application of this system to some degree. The AMA1 element is a self-replicator derived from Aspergillus nidulans, and its derived vectors can be readily lost without selection. In this study, we eliminated Cas9 toxicity to Fusarium venenatum TB01 based on 100% AMA1-based Cas9 expression vector loss. Meanwhile, two available endogenous Pol III promoters (FvU6374 and Fv5SrRNA) used for sgRNA expression of the CRISPR/Cas9 system were excavated. Compared to FvU6374 (40-50%), Fv5SrRNA exhibited higher single-gene editing efficiency (> 85%), and the efficiency of simultaneous editing of the two genes using Fv5SrRNA was over 75%. Based on this system, a butanediol dehydrogenase encoding gene FvBDH was deleted, and the ethanol yield in variants increased by 52% compared with that of the wild-type. The highly efficient CRISPR/Cas9 system developed here lays the technical foundation for advancing the development of F. venenatum TB01 through metabolic engineering, and the obtained FvBDH gene-edited variants have the potential to simultaneously produce mycoprotein and ethanol by further gene modification and fermentation process optimization in the future.Key points• Cas9 toxicity disappeared and DNA-free gene-edited strains obtained after vector loss• Promoter Fv5SrRNA conferred TB01 higher gene editing efficiency than FvU6374•Deletion of the FvBDH gene resulted in a 52% increase in ethanol yield.


Subject(s)
CRISPR-Associated Proteins , Gene Editing , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Ethanol/toxicity , Fusarium , Gene Editing/methods
4.
Synth Syst Biotechnol ; 8(1): 141-147, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36687472

ABSTRACT

CRISPR/Cas9-mediated homology-directed recombination is an efficient method to express target genes. Based on the above method, providing ideal neutral integration sites can ensure the reliable, stable, and high expression of target genes. In this study, we obtained a fluorescent transformant with neutral integration and high expression of the GFP expression cassette from the constructed GFP expression library and named strain FS. The integration site mapped at 4886 bp upstream of the gene FVRRES_00686 was identified in strain FS based on a Y-shaped adaptor-dependent extension, and the sequence containing 600 bp upstream and downstream of this site was selected as the candidate region for designing sgRNAs (Sites) for CRISPR/Cas9-mediated homology-directed recombination. PCR analysis showed that the integration efficiency of CRISPR/Cas9-mediated integration of target genes in designed sites reached 100%. Further expression stability and applicability analysis revealed that the integration of the target gene into the above designed sites can be stably inherited and expressed and has no negative effect on the growth of F. venenatum TB01. These results indicate the above designed neutral sites have the potential to accelerate the development of F. venenatum TB01 through overexpression of target genes in metabolic engineering.

5.
Plants (Basel) ; 12(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068656

ABSTRACT

Ethylene plays an important role in plant development and stress resistance. The rate-limiting enzyme in ethylene biosynthesis is 1-aminocyclopropane-1-carboxylic acid synthase (ACS). C. quinoa (Chenopodium quinoa) is an important food crop known for its strong tolerance to abiotic stresses. However, knowledge regarding the ACS gene family in C. quinoa remains restricted. In this study, we successfully identified 12 ACS genes (CqACSs) from the C. quinoa genome. Through thorough analysis of their sequences and phylogenetic relationships, it was verified that 8 out of these 12 CqACS isozymes exhibited substantial resemblance to ACS isozymes possessing ACS activity. Furthermore, these eight isozymes could be categorized into three distinct groups. The four remaining CqACS genes grouped under category IV displayed notable similarities with AtACS10 and AtACS12, known as amido transferases lacking ACS activity. The CqACS proteins bore resemblance to the AtACS proteins and had the characteristic structural features typically observed in plant ACS enzymes. Twelve CqACS genes were distributed across 8 out of the 18 chromosomes of C. quinoa. The CqACS genes were expanded from segment duplication. Many cis-regulatory elements related with various abiotic stresses, phytohormones, and light were found. The expression patterns of ACS genes varied across different tissues of C. quinoa. Furthermore, the analysis of gene expression patterns under abiotic stress showed that CqACS genes can be responsive to various stresses, implying their potential functions in adapting to various abiotic stresses. The findings from this research serve as a foundation for delving deeper into the functional roles of CqACS genes.

6.
Genes (Basel) ; 15(1)2023 12 27.
Article in English | MEDLINE | ID: mdl-38254931

ABSTRACT

Plant protein phosphatase 2Cs (PP2Cs) function as inhibitors in protein kinase cascades involved in various processes and are crucial participants in both plant development and signaling pathways activated by abiotic stress. In this study, a genome-wide study was conducted on the CqPP2C gene family. A total of putative 117 CqPP2C genes were identified. Comprehensive analyses of physicochemical properties, chromosome localization and subcellular localization were conducted. According to phylogenetic analysis, CqPP2Cs were divided into 13 subfamilies. CqPP2Cs in the same subfamily had similar gene structures, and conserved motifs and all the CqPP2C proteins had the type 2C phosphatase domains. The expansion of CqPP2Cs through gene duplication was primarily driven by segmental duplication, and all duplicated CqPP2Cs underwent evolutionary changes guided by purifying selection. The expression of CqPP2Cs in various tissues under different abiotic stresses was analyzed using RNA-seq data. The findings indicated that CqPP2C genes played a role in regulating both the developmental processes and stress responses of quinoa. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis of six CqPP2C genes in subfamily A revealed that they were up-regulated or down-regulated under salt and drought treatments. Furthermore, the results of yeast two-hybrid assays revealed that subfamily A CqPP2Cs interacted not only with subclass III CqSnRK2s but also with subclass II CqSnRK2s. Subfamily A CqPP2Cs could interact with CqSnRK2s in different combinations and intensities in a variety of biological processes and biological threats. Overall, our results will be useful for understanding the functions of CqPP2C in regulating ABA signals and responding to abiotic stress.


Subject(s)
Chenopodium quinoa , Humans , Chenopodium quinoa/genetics , Genome-Wide Association Study , Phylogeny , Biological Evolution , Data Interpretation, Statistical , Phosphoric Monoester Hydrolases
7.
J Fungi (Basel) ; 8(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35205923

ABSTRACT

Genetic engineering is one of the most effective methods to obtain fungus strains with desirable traits. However, in some filamentous fungi, targeted gene deletion transformant screening on primary transformation plates is time-consuming and laborious due to a relatively low rate of homologous recombination. A strategy that compensates for the low recombination rate by improving screening efficiency was performed in F. venenatum TB01. In this study, the visualized gene deletion system that could easily distinguish the fluorescent randomly inserted and nonfluorescent putative deletion transformants using green fluorescence protein (GFP) as the marker and a hand-held lamp as the tool was developed. Compared to direct polymerase chain reaction (PCR) screening, the screening efficiency of gene deletion transformants in this system was increased approximately fourfold. The visualized gene deletion system developed here provides a viable method with convenience, high efficiency, and low cost for reaping gene deletion transformants from species with low recombination rates.

SELECTION OF CITATIONS
SEARCH DETAIL