ABSTRACT
In this work, a highly sensitive and selective method for detecting folic acid (FA) was developed using D-penicillamine (DPA) stabilized Ag/Cu alloy nanoclusters (DPA@Ag/Cu NCs). The yellow emission of DPA@Ag/Cu NCs was found to be quenched upon the addition of FA to the system. The fluorescence intensity quenching value demonstrated a linear relationship with FA concentrations ranging from 0.01 to 1200â µM, with a limit of detection (LOD) of 5.3â nM. Furthermore, the detection mechanism was investigated through various characterization analyses, including high resolution transmission electron microscopy, fluorescence spectra, ultraviolet-visible absorption spectra, and fluorescence lifetime. The results indicated that the fluorescence quenching induced by FA was a result of electron transfer from FA to the ligands of DPA@Ag/Cu NCs. The selectivity of the FA sensor was also evaluated, showing that common amino acids and inorganic ions had minimal impact on the detection of FA. Moreover, the standard addition method was successfully applied to detect FA in human serum, chewable tablets and FA tablets with promising results. The use of DPA@Ag/Cu NCs demonstrates significant potential for detecting FA in complex biological samples.
Subject(s)
Alloys , Copper , Fluorescent Dyes , Folic Acid , Penicillamine , Silver , Spectrometry, Fluorescence , Penicillamine/analysis , Penicillamine/chemistry , Penicillamine/blood , Copper/chemistry , Folic Acid/analysis , Folic Acid/chemistry , Folic Acid/blood , Silver/chemistry , Humans , Alloys/chemistry , Fluorescent Dyes/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Tablets/analysisABSTRACT
Crowding stress is a common abiotic stressor in intensive aquaculture that negatively impacts fish species, leading to growth depression. This study primarily explored the effects of crowding stress on the growth and intestinal integrity of largemouth bass (Micropterus salmoides). A 10-week feeding experiment was conducted with two groups: a control group (0.55 kg/m³) and a crowding stress group (1.10 kg/m³). The results showed that crowding stress significantly impaired fish growth and compromised intestinal integrity. To further elucidate the underlying mechanisms, we investigated the effects of crowding stress on endoplasmic reticulum (ER) stress, autophagy and apoptosis. Our findings revealed an increased proportion of terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL)-positive cells and ER swelling in the intestines of stressed fish, along with a higher number of autophagosomes. Furthermore, there was a significant upregulation in the mRNA expression of genes related to ER stress, autophagy and apoptosis, including GRP78, eIF2α, IRE1, atg3, LC3-2, ulk1α, P62, and caspase-8. In conclusion, crowding stress negatively affects fish growth and intestinal integrity, potentially through the induction of apoptosis and autophagy associated with ER stress-mediated unfolded protein response (UPR). These findings provided critical insights into how intensive aquaculture disrupts intestinal integrity and inhibits growth in fish, offering a valuable reference for future research aimed at enhancing stress resistance in fish under intensive aquaculture conditions.
ABSTRACT
Comprehending endangered species' spatial distribution in response to global climate change (GCC) is of great importance for formulating adaptive management, conservation, and restoration plans. However, it is regrettable that previous studies mainly focused on geoclimatic species, while neglected climate-sensitive subterranean taxa to a large extent, which clearly hampered the discovery of universal principles. In view of this, taking the endemic troglophile riverine fish Onychostoma macrolepis (Bleeker, 1871) as an example, we constructed a MaxEnt (maximum-entropy) model to predict how the spatial distribution of this endangered fish would respond to future climate changes (three Global Climate Models × two Shared Socio-economic Pathways × three future time nodes) based on painstakingly collected species occurrence data and a set of bioclimatic variables, including WorldClim and ENVIREM. Model results showed that variables related to temperature rather than precipitation were more important in determining the geographic distribution of this rare and endemic fish. In addition, the suitable areas and their distribution centroids of O. macrolepis would shrink (average: 20,901.75 km2) and move toward the northeast or northwest within the study area (i.e. China). Linking our results with this species' limited dispersion potential and unique habitat requirements (i.e. karst landform is essential), we thus recommended in situ conservation to protect this relict.
Subject(s)
Climate Change , Ecosystem , Animals , Endangered Species , Temperature , ChinaABSTRACT
Strain SX5T was isolated from the soil of a poultry farm in Shanxi Province, PR China. The isolate was a Gram-stain-negative, rod-shaped, non-flagellated, and yellow bacterium. Growth occurred at 20-37 °C (optimum, 28 °C), pH 6.0-10.0 (optimum, pH 8.0) and 0-1â% NaCl (optimum, 0â%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SX5T was related to members of the genus Luteimonas, and close to Luteimonas gilva H23T (97.9â%), Luteimonas cucumeris Y4T (97.9â%), Luteimonas aquatica RIB1-20T (96.8â%), Luteimonas notoginsengisoli SYP-B804T (96.4â%) and Luteimonas panaciterrae Gsoil 068T (96.1â%). The major cellular fatty acids of strain SX5T were iso-C16â:â0, iso-C17â:â1 ω9c, iso-C15â:â0 and iso-C11â:â0 3OH. The sole isoprenoid quinone was ubiquinone Q-8, and the major polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Genome analyses revealed that strain SX5T had a genome size of 3.6 Mbp with a G+C content of 65.7âmol% and contained abundant carbohydrate-active enzyme genes and three putative distinct biosynthetic gene clusters, suggesting that it may have great potential to degrade and utilize complex biological organic matter and produce special secondary metabolites. Comparative genomic analyses clearly separated strain SX5T from the known species of the genus Luteimonas based on average nucleotide identity and digital DNA-DNA hybridization values below the thresholds for species delineation. Based on its phenotypic, genotypic properties and phylogenetic inference, strain SX5T represents a novel species in the genus Luteimonas, for which the name Luteimonas galliterrae sp. nov. is proposed. The type strain is SX5T (=GDMCC 1.2162T=KCTC 82443T=JCM 34401T).
Subject(s)
Fatty Acids , Phospholipids , Animals , Fatty Acids/chemistry , Phospholipids/chemistry , Farms , Soil , Phylogeny , RNA, Ribosomal, 16S/genetics , Poultry , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNAABSTRACT
Strain CY1518T was isolated from an anaerobic fermentation liquid of food waste treatment plant in Beijing, PR China, and characterized to assess its taxonomy. Cells of CY1518T were Gram-stain-negative, oxidase-negative, catalase-positive and ellipsoidal. Growth occurred at 20-42 °C (optimum, 37 °C), pH 6.0-10.0 (optimum, pH 8) and with 0-6.0â% (w/v) NaCl (optimum, 1.5%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CY1518T belongs to the genus Alcanivorax, with the highest sequence similarity to Alcanivorax pacificus W11-5T (95.97â%), followed by Alcanivorax indicus SW127T (95.08%). The similarity between strain CY1518T and other strains of Alcanivorax was less than 95â%. The genomic DNA G+C content of strain CY1518T was 60.88 mol%. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between strain CY1518T and the closely related taxa A. pacificus W11-5T and A. indicus SW127T were 77.61, 78.03 and 21.2â% and 74.15, 70.02 and 19.3%, respectively. The strain was able to use d-serine, Tween 40 and some organic acid compounds for growth. The polar lipids comprised aminophospholipid, diphosphatidylglycerol, glycolipid, an unknown polar lipid, phosphatidylethanolamine, phosphatidylglycerol and phospholipid. The principal fatty acids (>5â%) were C19â:â0 cyclo ω8c (36.3%), C16â:â0 (32.3%), C12â:â0 3-OH (8.3%) and C12â:â0 (7.6%). Based on its phenotypic, genotypic and genomic characteristics, strain CY1518T represents a novel species in the genus Alcanivorax, for which the name Alcanivorax quisquiliarum sp. nov. is proposed. The type strain is CY1518T (=GDMCC 1.2918T=JCM 35120T).
Subject(s)
Alcanivoraceae , Refuse Disposal , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Anaerobiosis , Fermentation , Food , DNA, Bacterial/genetics , Sequence Analysis, DNA , Base Composition , Bacterial Typing Techniques , Phospholipids/chemistry , Nucleic Acid HybridizationABSTRACT
A Gram-stain-negative, cocci-to-oval-shaped bacterial strain, designated XZZS9T, was isolated from the rhizosphere soil of Pinus sylvestris var. mongolica and characterized taxonomically using a polyphasic approach. Growth occurred at 20-35 °C (optimum, 28 °C), pH 6.0-11.0 (optimum, pH 7.0), and in 0-1% NaCl (optimum, 0%). Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain XZZS9T was related to members of the genus Roseococcus, with the highest sequence identity to Roseococcus microcysteis NIBR12T (96.9%). The major cellular fatty acids (> 5% of the total) were C18:1 ω7c and C19:0 cyclo ω8c. The major isoprenoid quinone was Q-9 and the polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an unidentified glycophospholipid, and an unidentified phospholipid. Genome sequencing revealed that had a genome size of 4.79 Mbp with a G + C content of 69.5%. Comparative genomic analyses clearly separated strain XZZS9T from the known species of the genus Roseococcus based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values below the thresholds for species delineation. Genome annotations did not find pufL and pufM genes in strain XZZS9T, suggesting a possible lack of photosynthetic reaction. Based on genotypic and phenotypic characteristics, strain XZZS9T represents a novel species of the genus Roseococcus, for which we propose the name Roseococcus pinisoli sp. nov. The type strain is XZZS9T (= KCTC 82435T = JCM 34402T = GDMCC 1.2158T).
Subject(s)
Acetobacteraceae , Bacteriochlorophyll A , Acetobacteraceae/genetics , Bacterial Typing Techniques , Bacteriochlorophyll A/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNAABSTRACT
BACKGROUND: Understanding how organisms evolve and adapt to extreme habitats is of crucial importance in evolutionary ecology. Altitude gradients are an important determinant of the distribution pattern and range of organisms due to distinct climate conditions at different altitudes. High-altitude regions often provide extreme environments including low temperature and oxygen concentration, poor soil, and strong levels of ultraviolet radiation, leading to very few plant species being able to populate elevation ranges greater than 4000 m. Field pennycress (Thlaspi arvense) is a valuable oilseed crop and emerging model plant distributed across an elevation range of nearly 4500 m. Here, we generate an improved genome assembly to understand how this species adapts to such different environments. RESULTS: We sequenced and assembled de novo the chromosome-level pennycress genome of 527.3 Mb encoding 31,596 genes. Phylogenomic analyses based on 2495 single-copy genes revealed that pennycress is closely related to Eutrema salsugineum (estimated divergence 14.32-18.58 Mya), and both species form a sister clade to Schrenkiella parvula and genus Brassica. Field pennycress contains the highest percentage (70.19%) of transposable elements in all reported genomes of Brassicaceae, with the retrotransposon proliferation in the Middle Pleistocene being likely responsible for the expansion of genome size. Moreover, our analysis of 40 field pennycress samples in two high- and two low-elevation populations detected 1,256,971 high-quality single nucleotide polymorphisms. Using three complementary selection tests, we detected 130 candidate naturally selected genes in the Qinghai-Tibet Plateau (QTP) populations, some of which are involved in DNA repair and the ubiquitin system and potential candidates involved in high-altitude adaptation. Notably, we detected a single base mutation causing loss-of-function of the FLOWERING LOCUS C protein, responsible for the transition to early flowering in high-elevation populations. CONCLUSIONS: Our results provide a genome-wide perspective of how plants adapt to distinct environmental conditions across extreme elevation differences and the potential for further follow-up research with extensive data from additional populations and species.
Subject(s)
Thlaspi , Acclimatization , Adaptation, Physiological/genetics , Genomics , Ultraviolet RaysABSTRACT
Strain XQZ8T, isolated from the rhizosphere soil of a Populus popularis plant in China, was characterized using a polyphasic taxonomic approach. Cells were Gram-negative, aerobic, non-spore-forming, and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain XQZ8T was related to members of the genus Rhizobium and had the highest 16S rRNA gene sequence similarity to Rhizobium smilacinae PTYR-5T (96.6%). The average nucleotide identity and digital DNA-DNA hybridization value between strain XQZ8T and R. smilacinae PTYR-5T were 77.5% and 21.4%, respectively. TYGS whole-genome-based taxonomic and multi-locus sequence analyses of three concatenated housekeeping genes (atpD-recA-glnII) further indicated that strain XQZ8T was a new member of the genus Rhizobium. The major cellular fatty acids included summed feature 8 (C18:1 ω7c/C18:1 ω6c), summed feature 2 (C12:0 aldehyde/unknown 10.928), C16:0, and C19:0 cyclo ω8c. The major respiratory quinones were Q-9 and Q-10. The polar lipids were phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine, an unidentified glycophospholipid, and three unidentified lipids. The genomic DNA G + C content of the strain was 60.1 mol%. Based on the phylogenetic, phenotypic, and genotypic characteristics, strain XQZ8T represents a novel species of the genus Rhizobium, for which the name Rhizobium populisoli sp. nov. is proposed. The type strain is XQZ8T (= JCM 34442T = GDMCC 1.2201T).
Subject(s)
Populus , Rhizobium , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizosphere , Sequence Analysis, DNA , Soil , Soil MicrobiologyABSTRACT
PURPOSE: We aimed (1) to determine the molecular diagnosis rate and the recurrent causative genes of patients with non-obstructive azoospermia (NOA) using targeted next-generation sequencing (NGS) panel screening and (2) to discuss whether these genes help in the prognosis for microsurgical testicular sperm extraction (micro-TESE). METHODS: We used NGS panels to screen 668 Chinese men with NOA. Micro-TESE outcomes for six patients with pathogenic mutations were followed up. Functional assays were performed for two NR5A1 variants identified: p.I224V and p.R281C. RESULTS: Targeted NGS panel sequencing could explain 4/189 (2.1% by panel 1) or 10/479 (2.1% by panel 2) of the patients with NOA after exclusion of karyotype abnormalities and Y chromosome microdeletions. Almost all mutations detected were newly described except for NR5A1 p.R281C and TEX11 p.M156V. Two missense NR5A1 mutations-p.R281C and p.I244V-were proved to be deleterious by in vitro functional assays. Mutations in TEX11, TEX14, and NR5A1 genes are recurrent causes of NOA, but each gene explains only a very small percentage (less than 4/668; 0.6%). Only the patient with NR5A1 mutations produced viable spermatozoa through micro-TESE, but other patients with TEX11 and TEX14 had poor micro-TESE prognoses. CONCLUSIONS: A targeted NGS panel is a feasible diagnostic method for patients with NOA. Because each gene implicated explains only a small proportion of such cases, more genes should be included to further increase the diagnostic rate. Considering previous reports, we suggest that only a few genes that are directly linked to meiosis can indicate poor micro-TESE prognosis, such as TEX11, TEX14, and SYCE1.
Subject(s)
Azoospermia/genetics , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , High-Throughput Nucleotide Sequencing , Transcription Factors/genetics , Adult , Azoospermia/diagnosis , Azoospermia/epidemiology , Azoospermia/pathology , China/epidemiology , Humans , Male , Meiosis/genetics , Sperm Retrieval , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/growth & development , Testis/metabolismABSTRACT
PURPOSE: Multiple morphological abnormalities of the sperm flagella (MMAF) are important causes of male infertility. Mutations in DNAH1 are the main causative factors proven so far. We aim to determine the mutational landscape of DNAH1 in Chinese patients with MMAF. METHODS: Forty-one Chinese patients with MMAF were enrolled and underwent a 10-gene next-generation sequencing panel screening. RESULTS: Only the DNAH1 gene was found to have mutations in 12 of these unrelated individuals (29%). Combining published data from two other cohorts of Chinese men with MMAF, we suggest that p.P3909fs*33, p.R868X, p.Q1518X, p.E3284K, and p.R4096L are hotspot mutations. A polymorphism-rs12163565 (G>A)- showed linkage to p.P3909fs*33, suggesting that this involved a founder effect. Four of the 12 patients with DNAH1 mutations were able to use intracytoplasmic sperm injection with their partners and all were successful in obtaining embryos. CONCLUSIONS: Hotspot mutations were identified for Chinese patients with MMAF. MMAF sub-phenotypes might be associated with different combinations of DNAH1 mutations.
Subject(s)
Abnormalities, Multiple/epidemiology , Dyneins/genetics , Infertility, Male/epidemiology , Mutation , Oligospermia/epidemiology , Sperm Tail/pathology , Spermatozoa/pathology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Adult , Asian People/genetics , China/epidemiology , Cohort Studies , Humans , Infertility, Male/genetics , Infertility, Male/pathology , Male , Oligospermia/genetics , Oligospermia/pathology , Phenotype , Sperm Tail/metabolism , Spermatozoa/metabolism , Young AdultABSTRACT
Southwest China is one of the major global biodiversity hotspots. The Tanaka line, extending within southwestern China from its northwest to its southeast, is an important biogeographical boundary between the Sino-Japanese and Sino-Himalayan floristic regions. Understanding the evolutionary history of the regional keystone species would assist with both reconstructing historical vegetation dynamics and ongoing biodiversity management. In this research, we combined phylogeographic methodologies and species distribution models (SDMs) to investigate the spatial genetic patterns and distribution dynamics of Quercus kerrii, a dominant evergreen oak inhabiting southwest China lowland evergreen-broadleaved forests (EBLFs). A total of 403 individuals were sampled from 44 populations throughout southwest China. SDMs and mismatch distribution analysis indicated that Q. kerrii has undergone northward expansion since the Last Glacial Maximum (LGM). Quantitative analysis revealed that the range expansion of Q. kerrii since the LGM exceeded that of the sympatric mid-elevation species Quercus schottkyana, likely owing to their contrasting distribution elevations and habitat availabilities. The historical climate change since the LGM and the latitude gradient of the region played an important role in shaping the genetic diversity of Q. kerrii. The genetic differentiation index and genetic distance surface of Q. kerrii populations east of the Tanaka line exceeded those to its west. The long-term geographic isolation and environmental heterogeneity between the two sides of the Tanaka line might increase species divergence patterns and local adaptation. This study provides new insights into the historical dynamics of subtropical EBLFs and the changing biota of southwest China.
Subject(s)
Genetic Variation , Genetics, Population , Quercus/genetics , Bayes Theorem , Biological Evolution , China , Climate Change , DNA, Chloroplast/genetics , DNA, Plant/genetics , Ecosystem , Microsatellite Repeats , Models, Genetic , Phylogeography , Population DynamicsABSTRACT
BACKGROUND: The preharvest application of Ca-containing foliar fertilizers can reduce the incidence of bitter pit (BP) in apples and improve fruit quality by increasing the Ca content and decreasing both the N content and the N/Ca ratio in fruits. In this study, we aimed to investigate the control efficacy of Ca-containing fertilizers on the incidence of BP and their effects on the Ca and N contents in bagged 'Fuji' apples by spraying foliar fertilizer containing calcium chloride (CaCl2 ), calcium nitrate [Ca(NO3 )2 ] or calcium formate [Ca(HCOO)2 ] at an early stage, five days after full bloom (DAFB) and 40 DAFB, and at a late stage, 80 DAFB and 125 DAFB. RESULTS: The incidences of BP were reduced significantly by 43.2-73.0%, and the efficacy of spraying at an early stage was significantly higher than that of spraying at a late stage. The Ca content of bagged apple fruits increased whereas the N content and N/Ca ratio decreased after spraying Ca-containing foliar fertilizers; however, the Ca content, N content and N/Ca ratio of apple leaves were differentially influenced. CONCLUSION: Foliar fertilizer containing CaCl2, Ca(NO3 )2 or Ca(HCOO)2 can be used at an early stage to control BP in apple and improve the quality of bagged apple fruits. © 2018 Society of Chemical Industry.
Subject(s)
Calcium/analysis , Fertilizers/analysis , Malus/chemistry , Nitrogen/analysis , Calcium/metabolism , Calcium Chloride/analysis , Calcium Chloride/metabolism , Calcium Compounds/analysis , Calcium Compounds/metabolism , Formates/analysis , Formates/metabolism , Fruit/chemistry , Fruit/metabolism , Humans , Malus/metabolism , Nitrates/analysis , Nitrates/metabolism , Nitrogen/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , TasteABSTRACT
Thlaspi arvense is a well-known annual farmland weed with worldwide distribution, which can be found from sea level to above 4000 m high on the Qinghai-Tibetan Plateau (QTP). In this paper, a phylogeographic history of T. arvense including 19 populations from China was inferred by using three chloroplast (cp) DNA segments (trnL-trnF, rpl32-trnL and rps16) and one nuclear (n) DNA segment (Fe-regulated transporter-like protein, ZIP). A total of 11 chloroplast haplotypes and six nuclear alleles were identified, and haplotypes unique to the QTP were recognized (C4, C5, C7 and N4). On the basis of molecular dating, haplotypes C4, C5 and C7 have separated from others around 1.58 Ma for cpDNA, which corresponds to the QTP uplift. In addition, this article suggests that the T. arvense populations in China are a mixture of diverged subpopulations as inferred by hT/vT test (hT ≤ vT, cpDNA) and positive Tajima's D values (1.87, 0.05 < p < 0.10 for cpDNA and 3.37, p < 0.01 for nDNA). Multimodality mismatch distribution curves and a relatively large shared area of suitable environmental conditions between the Last Glacial Maximum (LGM) as well as the present time recognized by MaxEnt software reject the sudden expansion population model.
Subject(s)
Cell Nucleus/genetics , DNA, Chloroplast/genetics , DNA, Plant/genetics , Ecosystem , Models, Biological , Thlaspi/classification , Thlaspi/genetics , China , Evolution, Molecular , Genetic Variation/genetics , Phylogeny , Phylogeography , Sequence Analysis, DNAABSTRACT
Two new heterometallic coordination polymers, [Na4Ln12(stp)8(OH)16(H2O)12]·10H2O [Ln = Dy (1) and Ho (2)], have been prepared from monosodium 2-sulfoterephthalate (NaH2stp), dysprosium acetate, or holmium acetate. They are isostructural, possessing a [Ln12(µ3-OH)16](20+) wheel-cluster core based on four vertex-sharing cubane-like [Ln4(µ3-OH)4](8+) units. The Ln12 cores are linked by stp ligands into a three-dimensional (3D) architecture. Magnetic studies indicate that complex 1 exhibits slow relaxation of magnetization, and it can be regarded as the first 3D coordination assembly of a Dy12 cluster single-molecule magnet.
ABSTRACT
Long noncoding RNAs (lncRNAs), which are RNA molecules that do not code for proteins and have a length exceeding 200 base pairs, have been found to play a crucial role in regulating intestinal immunity. The high mortality of various fish species induced by high temperatures is known to be associated with enteritis. Our investigation demonstrated that acute heat stress was responsible for inducing fish enteritis. However, the specific lncRNAs involved this process remains unknown. In this current study, we utilized intestinal sequencing data from the largemouth bass species Micropterus salmoides under acute heat stress, resulting in a total of 347,351,492 clean reads obtained from six cDNA libraries. A total of 3399 novel lncRNA transcripts originating from 2488 distinct lncRNA genes were successfully identified. Consistent with previous findings in other fish species, these lncRNAs demonstrated comparatively shorter transcript lengths when compared to protein-coding genes. Furthermore, a total of 216 novel lncRNA exhibited differential expression (DE) in the intestine of largemouth bass, meeting the criteria of absolute log2 fold change exceeding 2 and a p-value below 0.05. Additionally, these DE-lncRNAs were found to regulate 210 neighboring genes in a cis-regulatory manner. An examination of GO/KEGG enrichment revealed a notable enrichment of immune regulation (p < 0.05) among these cis-genes, with lncRNA MSTRG.8573.1 playing a significant role in regulating the jak-stat signaling pathway during this process. This study presents a comprehensive inventory of novel DE-lncRNA implicated in the development of enteritis in largemouth bass under acute heat stress. These findings offer valuable insights for future investigations on the regulation of lncRNAs to mitigate heat stress-induced fish enteritis.
Subject(s)
Bass , Enteritis , RNA, Long Noncoding , Animals , Bass/genetics , RNA, Long Noncoding/genetics , Intestines , Enteritis/genetics , Enteritis/veterinaryABSTRACT
Lumpy skin disease virus (LSDV) is capable of causing transboundary diseases characterized by fever, nodules on the skin, mucous membranes, and inner organs. The disease may cause emaciation with the enlargement of lymph nodes and sometimes death. It has had endemic importance in various parts of Asia in recent years, causing substantial economic losses to the cattle industry. The current study reported a suspected LSDV infection (based on signs and symptoms) from a mixed farm of yak and cattle in Sichuan Province, China. The clinical samples were found positive for LSDV using qPCR and ELISA, while LSDV DNA was detected in Culex tritaeniorhynchus Giles. The complete genome sequence of China/LSDV/SiC/2021 was determined by Next-generation sequencing. It was found that China/LSDV/SiC/2021 is highly homologous to the novel vaccine-related recombinant LSDV currently emerging in China and countries surrounding China. Phylogenetic tree analysis revealed that the novel vaccine-associated recombinant LSDV formed a unique dendrograms topology between field and vaccine-associated strains. China/LSDV/SiC/2021 was found to be a novel recombinant strain, with at least 18 recombination events via field viruses identified in the genome sequence. These results suggest that recombinant LSDV can cause high mortality in yaks, and its transmission might be due to the Culex tritaeniorhynchus Giles, which acts as a mechanical vector.
Subject(s)
Culex , Lumpy Skin Disease , Lumpy skin disease virus , Animals , Cattle , Lumpy skin disease virus/genetics , Phylogeny , Mosquito Vectors , Disease Outbreaks/veterinaryABSTRACT
Haihe River is the largest water system in North China and is injected into the Bohai Sea in Tianjin City. In this study, different types of human disturbance (urban sewage, industrial pollution, ship disturbance) were selected from the upper reaches of Haihe river Tianjin section down to the estuary that connected with Bohai Sea for evaluation. By metagenomic sequencing, the effects of different types of disturbances on bacteria communities in Haihe sediments were studied, with a special focus on the function of nitrogen-cycling bacteria that were further analyzed through KEGG comparison. By analyzing the physical and chemical characteristics of sediments, results showed that human disturbance caused a large amount of nitrogen input into Haihe River, and different types of human disturbance led to distinct spatial heterogeneity in different sections of Haihe River. The bacteria community was dominated by Proteobacteria, followed by Chloroflexi, Bacteroidetes, Actinobacteria and Acidobacteria. The relative abundance of each phylum varied at different sites as a response to different types of human disturbances. In nitrogen cycling, microorganisms including nitrogen fixation and removal were detected at each site, which indicated the active potential for nitrogen transformation in Haihe River. In addition, a large number of metabolic pathways relating to human diseases were also revealed in urban and pollution sites by function potential, which provided an important basis for the indicative role of urban river ecosystem for public health security. In summary, by evaluating both the ecological role and function potential of bacteria in Haihe River under different types of human disturbance, the knowledge of microorganisms for healthy and disturbed river ecosystems has been broadened, which is also informative for further river management and bioremediation.
ABSTRACT
Heavy metals in ocean may accumulate in seafood through food web and pose risks to human health. This study investigated the occurrence, trophic magnification, and health risks of 7 heavy metals in 20 marine organisms (n = 222) in Laizhou Bay (LZB), China. Results showed that Zn was the most abundant metal, followed by Cu, As, Cd, Cr, Ni and Pb. The total concentrations of 7 heavy metals in the organisms ranked in the order of crab Ë shellfish Ë algae Ë fish Ë starfish. Interspecific differences were found in the concentrations of Cr, Ni, Cu and Cd in marine organisms from LZB. Crab and shellfish showed much higher enrichment ability of heavy metals than that of algae, starfish and fish. Cd is the most biological accumulated element with the mean biota-sediment accumulation factor (BSAF) of 12.9. Stable isotope analysis showed a significant difference of δ15N among these five species (p < 0.01), and a food web was constructed accordingly. A biodilution pattern was found for Pb, As and Ni and no trophic interference in metal uptake was observed for Zn, Cu, Ni and Cr in the food web of LZB. The estimated daily intake (EDI) and target hazard quotients (THQs) of As and Cd indicated an adverse health effect on consumption of the seafood. The mean lifetime cancer risks (LCRs) for Cd and As suggested a potential carcinogenic effect on consumption of these seafood. This study provides a basis for health risk assessment of heavy metals in marine foods.
Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Aquatic Organisms , Bays , Cadmium/analysis , China , Environmental Monitoring/methods , Fishes , Food Chain , Lead/analysis , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysisABSTRACT
The Tibetan livestock sector is now ailing from many infectious ailments brought on by harmful microorganisms. Therefore, this research aimed to assess the probiotic potential and safety of Bacillus amyloliquefaciens isolated from yaks in the Tibet area to provide upper-edge strain resources for probiotics development. The four strains isolated from the intestine of yaks had been identified as Bacillus amyloliquefaciens after the 16S rRNA sequence. The ethanol, bile salt, and acid tolerance revealed that the isolates had significant tolerance levels. The antibiotics susceptibility assay showed that the strains were sensitive to commonly used antibiotics, while the antibacterial assay prevented the isolates from outperforming five harmful bacteria in terms of antibacterial potency. Moreover, it was evident that strain BA5 had the strongest activity to scavenge hydroxyl radical and reduce power. According to the animal experiment, no apparent pathological change was observed in intestinal tissue sections. Furthermore, the strain had a positive effect on promoting the development of jejunal villi referred to its safety. Therefore, more research is required into the bacteriostatic and antioxidant capabilities of isolates in animal production.