Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Environ Manage ; 295: 113065, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34171776

ABSTRACT

In recent years, there have been a number of studies on bioretention during hot summer, with only few studies reported during low-temperature winters. The application of bioretention in cold areas still lacks effective guidance. In this study, runoff simulation experiments were conducted to explore the influence of wood chips filler and water treatment residue on the removal of runoff pollutants under different packing gradations and low temperature conditions. Under low temperature, nitrate nitrogen removal rate of wood chips filler decreased from 70% to 90% in autumn to -23%- 35% in winter, the total nitrogen removal rate decreased from 75 to 90% in autumn to 20%-50% in winter, the removal rate of ammonia nitrogen and total phosphorus exceeded 70% during the entire experiment. Water treatment residue filler maintained a high ammonia nitrogen and total phosphorus removal rate during the experiment, with the total phosphorus removal rate above 90% and ammonia nitrogen removal rate above 80%. The bioretention effluent concentration of nitrate and total nitrogen was higher than 7.3 mg/L and 8.5 mg/L, respectively, most of the time. However, at low temperature, the COD removal rate of the two fillers was 25%-50%, which was very poor. Therefore, wood chips filler was observed to be better suited for the removal of nitrate and total nitrogen from the runoff, while water treatment residue had a better effect on the removal of ammonia nitrogen and total phosphorus in winter. Thus, for the application of bioretention in northern China, appropriate fillers should be selected considering the water quality characteristics of the area.


Subject(s)
Water Pollutants, Chemical , Water Purification , China , Nitrogen/analysis , Phosphorus/analysis , Rain , Temperature
2.
Environ Technol ; : 1-13, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34256688

ABSTRACT

As a form of pollution source control and a low-impact development measure, bioretention is a convenient, economical, and effective method for the removal of heavy metals from stormwater runoff, which can adapt to the randomness and uncontrollability of non-point source pollution. However, few studies have assessed the performance of bioretention in the simultaneous removal of multiple heavy metals and the impact of heavy metal migration on the bioretention life cycle. In this study, the removal rates of various heavy metals: copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd), were enhanced using a biochar modified bioretention cell, as compared to the traditional sandy soil bioretention process. Following treatment with the biochar modified bioretention cell, the average concentrations of Cu, Zn, Pb, and Cd were 55%, 61%, 19.66%, and 36.43% lower than the traditional sandy soil bioretention effluent, respectively. These results show that biochar significantly improves the removal of heavy metals by the bioretention process, especially Cu and Zn. This study also evaluated the effect of biochar on the inhibition of heavy metal migration in the filler material, by sampling and analysing the filler and retained water at different filler depths, then repeating the filler leaching experiment after simulated rainfall. The content of heavy metals at a filler depth of 45 cm in the traditional sandy soil bioretention system, was significantly higher than in the biochar modified bioretention system, showing that biochar plays an important role in the inhibition of heavy metal migration.

SELECTION OF CITATIONS
SEARCH DETAIL