Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30550789

ABSTRACT

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Subject(s)
Carrier Proteins , DNA-Binding Proteins , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Transcription Factors , Viral Proteins , Virus Replication/physiology , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/pathology , Humans , Protein Interaction Mapping , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
2.
EMBO J ; 40(18): e105658, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34260076

ABSTRACT

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Proline/metabolism , Tyrosine/metabolism , Carrier Proteins , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Protein Binding , Virus Replication
3.
Pharm Res ; 36(7): 104, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31101988

ABSTRACT

PURPOSE: Since the 2014 Ebola virus (EBOV) outbreak in West Africa there has been considerable effort towards developing drugs to treat Ebola virus disease and yet to date there is no FDA approved treatment. This is important as at the time of writing this manuscript there is an ongoing outbreak in the Democratic Republic of the Congo which has killed over 1000. METHODS: We have evaluated a small number of natural products, some of which had shown antiviral activity against other pathogens. This is exemplified with eugenol, which is found in high concentrations in multiple essential oils, and has shown antiviral activity against feline calicivirus, tomato yellow leaf curl virus, Influenza A virus, Herpes Simplex virus type 1 and 2, and four airborne phages. RESULTS: Four compounds possessed EC50 values less than or equal to 11 µM. Of these, eugenol, had an EC50 of 1.3 µM against EBOV and is present in several plants including clove, cinnamon, basil and bay. Eugenol is much smaller and structurally unlike any compound that has been previously identified as an inhibitor of EBOV, therefore it may provide new mechanistic insights. CONCLUSION: This compound is readily accessible in bulk quantities, is inexpensive, and has a long history of human consumption, which endorses the idea for further assessment as an antiviral therapeutic. This work also suggests that a more exhaustive assessment of natural product libraries against EBOV and other viruses is warranted to improve our ability to identify compounds that are so distinct from FDA approved drugs.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Ebolavirus/drug effects , Eugenol/pharmacology , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/virology , HeLa Cells , Humans
4.
J Infect Dis ; 218(suppl_5): S612-S626, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29860496

ABSTRACT

Background: For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods: In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results: Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions: This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Animals , Antibodies, Monoclonal/isolation & purification , Glycoproteins/immunology , Guinea Pigs , HEK293 Cells , Humans , Macaca mulatta , Male , Mice
5.
PLoS Pathog ; 11(11): e1005263, 2015.
Article in English | MEDLINE | ID: mdl-26562011

ABSTRACT

Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Interferon-gamma/pharmacology , Macrophages/drug effects , Animals , Cells, Cultured , Humans , Macrophages/metabolism , Mice, Inbred BALB C , RNA, Viral/genetics , Virus Replication/drug effects
6.
Antimicrob Agents Chemother ; 60(8): 4471-81, 2016 08.
Article in English | MEDLINE | ID: mdl-27161622

ABSTRACT

Filoviruses are highly infectious, and no FDA-approved drug therapy for filovirus infection is available. Most work to find a treatment has involved only a few strains of Ebola virus and testing of relatively small drug libraries or compounds that have shown efficacy against other virus types. Here we report the findings of a high-throughput screening of 319,855 small molecules from the Molecular Libraries Small Molecule Repository library for their activities against Marburg virus and Ebola virus. Nine of the most potent, novel compounds that blocked infection by both viruses were analyzed in detail for their mechanisms of action. The compounds inhibited known key steps in the Ebola virus infection mechanism by blocking either cell surface attachment, macropinocytosis-mediated uptake, or endosomal trafficking. To date, very few specific inhibitors of macropinocytosis have been reported. The 2 novel macropinocytosis inhibitors are more potent inhibitors of Ebola virus infection and less toxic than ethylisopropylamiloride, one commonly accepted macropinocytosis inhibitor. Each compound blocked infection of primary human macrophages, indicating their potential to be developed as new antifiloviral therapies.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Marburgvirus/drug effects , Animals , Cell Line , Chlorocebus aethiops , Ebolavirus/genetics , Ebolavirus/metabolism , HeLa Cells , Humans , Marburgvirus/genetics , Marburgvirus/metabolism , Vero Cells
7.
Antimicrob Agents Chemother ; 60(8): 4552-62, 2016 08.
Article in English | MEDLINE | ID: mdl-27185801

ABSTRACT

Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons.


Subject(s)
Antiviral Agents/pharmacology , Interferon Type I/metabolism , Pyrimidines/biosynthesis , Cell Line , HIV-1/drug effects , Humans , Real-Time Polymerase Chain Reaction , Virus Replication/drug effects
8.
Transfusion ; 56 Suppl 1: S6-15, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27001363

ABSTRACT

BACKGROUND: Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD). STUDY DESIGN AND METHODS: Four in vitro experiments were conducted to evaluate effects of UV+RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum, and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1 to 3 were 4.21 log GFP units/mL, 4.96 log infectious units/mL, and 4.23 log plaque-forming units/mL. Conditions tested in the first three experiments included the following: 1-EBOV-GFP plus UV+RB; 2-EBOV-GFP plus RB only; 3-EBOV-GFP plus UV only; 4-EBOV-GFP without RB or UV; 5-virus-free control plus UV only; and 6-virus-free control without RB or UV. RESULTS: UV+RB reduced EBOV titers to nondetectable levels in both nonhuman primate serum (≥2.8- to 3.2-log reduction) and human whole blood (≥3.0-log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION: Our in vitro results demonstrate that the UV+RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV+RB can improve convalescent blood product safety is indicated.


Subject(s)
Blood/virology , Disinfection/methods , Ebolavirus , Hemorrhagic Fever, Ebola/prevention & control , Riboflavin/pharmacology , Ultraviolet Rays , Virus Inactivation/radiation effects , Animals , Chlorocebus aethiops , Humans , Macaca fascicularis , Vero Cells
9.
J Antimicrob Chemother ; 67(2): 444-51, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22114132

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV) is a major cause of viral encephalitis in South-East Asia and there is a pressing need to develop novel therapeutic options against it. METHODS: Gene silencing by RNA interference has therapeutic potential by way of degrading the RNA genome of JEV. Four small hairpin RNAs (shRNAs) targeting different locations in the JEV genome were evaluated for antiviral activity against JEV in different cell lines and the mouse model of disease. RESULTS: shN8010, an shRNA targeting the NS5-coding sequence of JEV, had significant antiviral activity in cultured cells. JEV titres were suppressed by 99% in human embryonic kidney cells at 24 h post-infection (p.i.) when shN8010 was delivered using a plasmid. Further, shN8010 delivered using recombinant adenovirus caused 99% and 95% suppression of JEV titres at 24 h p.i. in porcine stable kidney and Vero cells, respectively. In Neuro-2a cells, JEV titres at 24 h p.i. were suppressed by 90% when shN8010 was delivered using a recombinant adenovirus or retrovirus. Four-week-old FvB/J mice treated intracerebrally with recombinant adenovirus-delivered shN8010 1 week prior to lethal intraperitoneal JEV challenge showed no protection, although the mean survival time was prolonged. In a similar experiment, retrovirus-delivered shN8010 provided 100% protection to mice following the lethal JEV challenge. CONCLUSIONS: NS5-targeting shRNA (shN8010) had very significant antiviral activity in both cultured cells and the mouse model of JEV infection.


Subject(s)
Biological Products/administration & dosage , Biological Products/pharmacology , Encephalitis Virus, Japanese/drug effects , Encephalitis, Japanese/drug therapy , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Cells, Cultured , Disease Models, Animal , Encephalitis Virus, Japanese/genetics , Gene Silencing , Humans , Mice , Survival Analysis , Viral Load
10.
J Virol ; 85(1): 86-97, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20962101

ABSTRACT

Many aspects of the assembly of hepatitis C virus (HCV) remain incompletely understood. To characterize the role of NS2 in the production of infectious virus, we determined NS2 interaction partners among other HCV proteins during productive infection. Pulldown assays showed that NS2 forms complexes with both structural and nonstructural proteins, including E1, E2, p7, NS3, and NS5A. Confocal microscopy also demonstrated that NS2 colocalizes with E1, E2, and NS5A in dot-like structures near lipid droplets. However, NS5A did not coprecipitate with E2 and interacted only weakly with NS3 in pulldown assays. Also, there was no demonstrable interaction between p7 and E2 or NS3 in such assays. Therefore, NS2 is uniquely capable of interacting with both structural and nonstructural proteins. Among mutations in p7, NS2, and NS3 that prevent production of infectious virus, only p7 mutations significantly reduced NS2-mediated protein interactions. These p7 mutations altered the intracellular distribution of NS2 and E2 and appeared to modulate the membrane topology of the C-terminal domain of NS2. These results suggest that NS2 acts to coordinate virus assembly by mediating interactions between envelope proteins and NS3 and NS5A within replication complexes adjacent to lipid droplets, where virus particle assembly is thought to occur. p7 may play an accessory role by regulating NS2 membrane topology, which is important for NS2-mediated protein interactions and therefore NS2 function.


Subject(s)
Hepacivirus/metabolism , Viral Nonstructural Proteins/metabolism , Virus Assembly/physiology , Cell Line , Hepacivirus/genetics , Hepacivirus/physiology , Humans , Mutation , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
11.
ACS Infect Dis ; 8(5): 942-957, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35357134

ABSTRACT

Ebola virus (EBOV) is an aggressive filoviral pathogen that can induce severe hemorrhagic fever in humans with up to 90% fatality rate. To date, there are no clinically effective small-molecule drugs for postexposure therapies to treat filoviral infections. EBOV cellular entry and infection involve uptake via macropinocytosis, navigation through the endocytic pathway, and pH-dependent escape into the cytoplasm. We report the inhibition of EBOV cell entry via selective inhibition of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives of the natural product scaffold diphyllin. In cells challenged with Ebola virus, the diphyllin derivatives inhibit viral entry dependent upon structural variations to low nanomolar potencies. Mechanistically, the diphyllin derivatives had no effect on uptake and colocalization of viral particles with endocytic marker LAMP1 but directly modulated endosomal pH. The most potent effects were reversible exhibiting higher selectivity than bafilomycin or the parent diphyllin. Unlike general lysosomotrophic agents, the diphyllin derivatives showed no major disruptions of endocytic populations or morphology when examined with Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod treatment or in constitutively active Rab5 mutant Q79L-expressing cells was both blocked and reversed by the diphyllin derivatives. The results are consistent with the action of the diphyllin scaffold as a selective pH-dependent viral entry block in late endosomes. Overall, the compounds show improved selectivity and minimal cytotoxicity relative to classical endosomal acidification blocking agents.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Benzodioxoles/pharmacology , Hemorrhagic Fever, Ebola/drug therapy , Humans , Lignans , Phenol/pharmacology , Phenol/therapeutic use , Virus Internalization
12.
Antiviral Res ; 206: 105399, 2022 10.
Article in English | MEDLINE | ID: mdl-36007601

ABSTRACT

Filoviruses enter cells through macropinocytosis and trafficking into the endosomes in which they bind to the receptor Niemann-Pick C1 protein (NPC1) for membrane fusion and entry into the cytoplasm. The endosomal receptor-binding is critical step for filovirus entry. Designing inhibitors to block receptor binding will prevent viral entry. Using available binding structural information from the co-crystal structures of the viral GP with the receptor NPC1 or with monoclonal antibodies, we have conducted structure-based design of peptide inhibitors to target the receptor binding site (RBS). The designed peptides were tested for their inhibition activity against pseudo-typed or replication-competent viruses in a cell-based assay. The results indicate that these peptides exhibited strong activities against both Ebola and Marburg virus infection. It is expected that these peptides can be further developed for therapeutic use to treat filovirus infection and combat the outbreaks.


Subject(s)
Filoviridae , Receptors, Virus , Viral Fusion Protein Inhibitors , Binding Sites , Carrier Proteins/metabolism , Cell Line , Ebolavirus/physiology , Endosomes/metabolism , Filoviridae/chemistry , Filoviridae/drug effects , Hemorrhagic Fever, Ebola , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Membrane Glycoproteins/metabolism , Niemann-Pick C1 Protein/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacology , Virus Internalization/drug effects
13.
bioRxiv ; 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-33907750

ABSTRACT

Identification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection. This analysis revealed 389 small molecules, >12 scaffold classes and 813 host targets with micromolar to low nanomolar activities. From these classes, representatives were extensively evaluated for mechanism of action in stable and primary human cell models, and additionally against Beta and Delta SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of novel host factor dependencies and treatments for viral diseases.

14.
iScience ; 25(9): 104925, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35992305

ABSTRACT

Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection. This analysis revealed 389 small molecules with micromolar to low nanomolar activities, representing >12 scaffold classes and 813 host targets. Representatives were evaluated for mechanism of action in stable and primary human cell models with SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of host factor dependencies and treatments for viral diseases.

15.
Microorganisms ; 9(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445537

ABSTRACT

Ongoing efforts to develop effective therapies against filoviruses rely, to different extents, on quantifying the amount of viable virus in samples by plaque, TCID50, and focus assays. Unfortunately, these techniques have inherent variance, and laboratory-specific preferences make direct comparison of data difficult. Additionally, human errors such as operator errors and subjective bias can further compound the differences in outcomes. To overcome these biases, we developed a computer-based automated image-processing method for a focus assay based on the open-source CellProfiler software platform, which enables high-throughput screening of many treatment samples at one time. We compared virus titers calculated using this platform to plaque and TCID50 assays using common stocks of virus for 3 major Filovirus species, Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus with each assay performed by multiple operators on multiple days. We show that plaque assays give comparable findings that differ by less than 3-fold. Focus-forming unit (FFU) and TCID50 assays differ by 10-fold or less from the plaque assays due a higher (FFU) and lower (TCID50) sensitivity. However, reproducibility and accuracy of each assay differs significantly with Neutral Red Agarose Overlay plaque assays and TCID50 with the lowest reproducibility due to subjective analysis and operator error. Both crystal violet methylcellulose overlay plaque assay and focus assays perform best for accuracy and the focus assay performs best for speed and throughput.

16.
Antiviral Res ; 189: 105059, 2021 05.
Article in English | MEDLINE | ID: mdl-33705865

ABSTRACT

Filoviruses, mainly consisting of Ebola viruses (EBOV) and Marburg viruses (MARV), are enveloped negative-strand RNA viruses which can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. The filovirus infection is mediated by the interaction of viral envelope glycoprotein (GP) and the human endosomal receptor Niemann-Pick C1 (NPC1). Blocking this interaction will prevent the infection. Therefore, we utilized an In silico screening approach to conduct virtual compound screening against the NPC1 receptor-binding site (RBS). Twenty-six top-hit compounds were purchased and evaluated by in vitro cell based inhibition assays against pseudotyped or replication-competent filoviruses. Two classes (A and U) of compounds were identified to have potent inhibitory activity against both Ebola and Marburg viruses. The IC50 values are in the lower level of micromolar concentrations. One compound (compd-A) was found to have a sub-micromolar IC50 value (0.86 µM) against pseudotyped Marburg virus. The cytotoxicity assay (MTT) indicates that compd-A has a moderate cytotoxicity level but the compd-U has much less toxicity and the CC50 value was about 100 µM. Structure-activity relationship (SAR) study has found some analogs of compd-A and -U have reduced the toxicity and enhanced the inhibitory activity. In conclusion, this work has identified several qualified lead-compounds for further drug development against filovirus infection.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Filoviridae Infections/virology , Marburgvirus/drug effects , Niemann-Pick C1 Protein/metabolism , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects , Antiviral Agents/chemistry , Binding Sites , Cell Survival , Drug Discovery , Ebolavirus/physiology , Filoviridae Infections/drug therapy , HeLa Cells , Host Microbial Interactions/drug effects , Humans , Inhibitory Concentration 50 , Marburgvirus/physiology , Molecular Docking Simulation , Niemann-Pick C1 Protein/chemistry , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism
17.
J Antimicrob Chemother ; 65(5): 953-61, 2010 May.
Article in English | MEDLINE | ID: mdl-20299495

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV) has a significant impact on public health throughout Asia, and there is a pressing need for development of new therapeutics against it. METHODS: Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) are antisense agents that enter cells readily and interfere with gene expression. Four PPMOs, targeting various locations in the JEV genome, were evaluated for antiviral activity against JEV in cultured cells and the mouse model of JEV infection. RESULTS: A PPMO (P10882) targeting the JEV 3' cyclization sequence (3'CSI) had significant antiviral activity in Vero (epithelial), Neuro2A (neuronal) and J774E (macrophage) cells at concentrations that were not cytotoxic. P10882 added before infection suppressed JEV replication to an undetectable level in Vero cells and produced a 93% and 66% reduction in titre in J774E and Neuro2A cells, respectively, when measured at 24 h post-infection. In uninfected cells, fluorescein-labelled PPMOs entered J774E cells most efficiently, followed by Vero and Neuro2A cells. The antiviral effect of P10882 was also demonstrated in vivo, where 60%-80% of 1-week-old mice treated intracerebrally with a 20 mg/kg dose of P10882 every 12 h for 5 days were protected from a lethal dose of JEV and showed an undetectable level of virus in brain tissue at 2 days post-infection. CONCLUSIONS: P10882, which targets sequence that is highly conserved across members of the JEV serocomplex, was previously shown to be effective in a mouse model of West Nile disease, and represents a candidate antiviral agent against members of the JEV serocomplex.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis Virus, Japanese/drug effects , Oligonucleotides/pharmacology , Peptides/pharmacology , Animals , Antiviral Agents/therapeutic use , Cell Line , Chlorocebus aethiops , Encephalitis, Japanese/drug therapy , Epithelial Cells/virology , Macrophages/virology , Mice , Mice, Inbred BALB C , Neurons/virology , Oligonucleotides/therapeutic use , Peptides/therapeutic use , Survival Analysis
18.
ACS Infect Dis ; 6(10): 2783-2799, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32870648

ABSTRACT

Marburg virus (MARV) causes sporadic outbreaks of severe disease with high case fatality rates in humans. To date, neither therapeutics nor prophylactic approaches have been approved for MARV disease. The MARV matrix protein VP40 (mVP40) plays central roles in virus assembly and budding. mVP40 also inhibits interferon signaling by inhibiting the function of Janus kinase 1. This suppression of host antiviral defenses likely contributes to MARV virulence and therefore is a potential therapeutic target. We developed and optimized a cell-based high-throughput screening (HTS) assay in 384-well format to measure mVP40 interferon (IFN) antagonist function such that inhibitors could be identified. We performed a pilot screen of 1280 bioactive compounds and identified 3 hits, azaguanine-8, tosufloxacin hydrochloride, and linezolid, with Z scores > 3 and no significant cytotoxicity. Of these, azaguanine-8 inhibited MARV growth at noncytotoxic concentrations. These data demonstrate the suitability of the HTS mVP40 assay for drug discovery and suggest potential directions for anti-MARV therapeutic development.


Subject(s)
Marburg Virus Disease , Marburgvirus , Animals , High-Throughput Screening Assays , Humans , Interferons , Virus Assembly
19.
Antiviral Res ; 181: 104863, 2020 09.
Article in English | MEDLINE | ID: mdl-32682926

ABSTRACT

The recent outbreaks of the Ebola virus (EBOV) in Africa have brought global visibility to the shortage of available therapeutic options to treat patients infected with this or closely related viruses. We have recently computationally identified three molecules which have all demonstrated statistically significant efficacy in the mouse model of infection with mouse adapted Ebola virus (ma-EBOV). One of these molecules is the antimalarial pyronaridine tetraphosphate (IC50 range of 0.82-1.30 µM against three strains of EBOV and IC50 range of 1.01-2.72 µM against two strains of Marburg virus (MARV)) which is an approved drug in the European Union and used in combination with artesunate. To date, no small molecule drugs have shown statistically significant efficacy in the guinea pig model of EBOV infection. Pharmacokinetics and range-finding studies in guinea pigs directed us to a single 300 mg/kg or 600 mg/kg oral dose of pyronaridine 1hr after infection. Pyronaridine resulted in statistically significant survival of 40% at 300 mg/kg and protected from a lethal challenge with EBOV. In comparison, oral favipiravir (300 mg/kg dosed once a day) had 43.5% survival. All animals in the vehicle treatment group succumbed to disease by study day 12 (100% mortality). The in vitro metabolism and metabolite identification of pyronaridine and another of our EBOV active molecules, tilorone, suggested significant species differences which may account for the efficacy or lack thereof, respectively in guinea pig. In summary, our studies with pyronaridine demonstrates its utility for repurposing as an antiviral against EBOV and MARV.


Subject(s)
Antiviral Agents/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Naphthyridines/therapeutic use , Animals , Antiviral Agents/pharmacokinetics , Disease Models, Animal , Drug Repositioning , Ebolavirus/drug effects , Female , Guinea Pigs , Humans , Inhibitory Concentration 50 , Male , Marburgvirus/drug effects , Mice , Microsomes , Naphthyridines/pharmacokinetics
20.
J Med Chem ; 63(13): 7211-7225, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32490678

ABSTRACT

The recent Ebola epidemics in West Africa underscore the great need for effective and practical therapies for future Ebola virus outbreaks. We have discovered a new series of remarkably potent small molecule inhibitors of Ebola virus entry. These 4-(aminomethyl)benzamide-based inhibitors are also effective against Marburg virus. Synthetic routes to these compounds allowed for the preparation of a wide variety of structures, including a conformationally restrained subset of indolines (compounds 41-50). Compounds 20, 23, 32, 33, and 35 are superior inhibitors of Ebola (Mayinga) and Marburg (Angola) infectious viruses. Representative compounds (20, 32, and 35) have shown good metabolic stability in plasma and liver microsomes (rat and human), and 32 did not inhibit CYP3A4 nor CYP2C9. These 4-(aminomethyl)benzamides are suitable for further optimization as inhibitors of filovirus entry, with the potential to be developed as therapeutic agents for the treatment and control of Ebola virus infections.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Hemorrhagic Fever, Ebola/virology , Marburg Virus Disease/virology , Virus Internalization/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Benzamides/chemistry , Chlorocebus aethiops , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Evaluation, Preclinical , Humans , Microsomes, Liver/drug effects , Molecular Docking Simulation , Structure-Activity Relationship , Toremifene/chemistry , Toremifene/metabolism , Toremifene/pharmacology , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL