Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters

Publication year range
1.
Nature ; 607(7918): 294-300, 2022 07.
Article in English | MEDLINE | ID: mdl-35609624

ABSTRACT

Understanding the nanoscopic chemical and structural changes that drive instabilities in emerging energy materials is essential for mitigating device degradation. The power conversion efficiency of halide perovskite photovoltaic devices has reached 25.7 per cent in single-junction and 29.8 per cent in tandem perovskite/silicon cells1,2, yet retaining such performance under continuous operation has remained elusive3. Here we develop a multimodal microscopy toolkit to reveal that in leading formamidinium-rich perovskite absorbers, nanoscale phase impurities, including hexagonal polytype and lead iodide inclusions, are not only traps for photoexcited carriers, which themselves reduce performance4,5, but also, through the same trapping process, are sites at which photochemical degradation of the absorber layer is seeded. We visualize illumination-induced structural changes at phase impurities associated with trap clusters, revealing that even trace amounts of these phases, otherwise undetected with bulk measurements, compromise device longevity. The type and distribution of these unwanted phase inclusions depends on the film composition and processing, with the presence of polytypes being most detrimental for film photo-stability. Importantly, we reveal that both performance losses and intrinsic degradation processes can be mitigated by modulating these defective phase impurities, and demonstrate that this requires careful tuning of local structural and chemical properties. This multimodal workflow to correlate the nanoscopic landscape of beam-sensitive energy materials will be applicable to a wide range of semiconductors for which a local picture of performance and operational stability has yet to be established.

3.
Nature ; 580(7803): 360-366, 2020 04.
Article in English | MEDLINE | ID: mdl-32296189

ABSTRACT

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.

4.
Nat Mater ; 22(2): 216-224, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36702888

ABSTRACT

Investigation of the inherent field-driven charge transport behaviour of three-dimensional lead halide perovskites has largely remained challenging, owing to undesirable ionic migration effects near room temperature and dipolar disorder instabilities prevalent specifically in methylammonium-and-lead-based high-performing three-dimensional perovskite compositions. Here, we address both these challenges and demonstrate that field-effect transistors based on methylammonium-free, mixed metal (Pb/Sn) perovskite compositions do not suffer from ion migration effects as notably as their pure-Pb counterparts and reliably exhibit hysteresis-free p-type transport with a mobility reaching 5.4 cm2 V-1 s-1. The reduced ion migration is visualized through photoluminescence microscopy under bias and is manifested as an activated temperature dependence of the field-effect mobility with a low activation energy (~48 meV) consistent with the presence of the shallow defects present in these materials. An understanding of the long-range electronic charge transport in these inherently doped mixed metal halide perovskites will contribute immensely towards high-performance optoelectronic devices.

5.
Nature ; 555(7697): 497-501, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29565365

ABSTRACT

Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield-a quantity that must be maximized to obtain high efficiency-remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.

6.
Small ; : e2310199, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063859

ABSTRACT

Solution-processable near-infrared (NIR) photodetectors are urgently needed for a wide range of next-generation electronics, including sensors, optical communications and bioimaging. However, it is rare to find photodetectors with >300 kHz cut-off frequencies, especially in the NIR region, and many of the emerging inorganic materials explored are comprised of toxic elements, such as lead. Herein, solution-processed AgBiS2 photodetectors with high cut-off frequencies under both white light (>1 MHz) and NIR (approaching 500 kHz) illumination are developed. These high cut-off frequencies are due to the short transit distances of charge-carriers in the ultrathin photoactive layer of AgBiS2 photodetectors, which arise from the strong light absorption of this material, such that film thicknesses well below 120 nm are sufficient to absorb >65% of NIR to visible light. It is also revealed that ion migration plays a critical role in the photo-response speed of these devices, and its detrimental effects can be mitigated by finely tuning the thickness of the photoactive layer, which is important for achieving low dark current densities as well. These outstanding characteristics enable the realization of air-stable, real-time heartbeat sensors based on NIR AgBiS2 photodetectors, which strongly motivates their future integration in high-throughput systems.

7.
J Am Chem Soc ; 144(27): 12102-12115, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35759794

ABSTRACT

Colloidal lead-halide perovskite nanocrystals (LHP NCs) have emerged over the past decade as leading candidates for efficient next-generation optoelectronic devices, but their properties and performance critically depend on how they are purified. While antisolvents are widely used for purification, a detailed understanding of how the polarity of the antisolvent influences the surface chemistry and composition of the NCs is missing in the field. Here, we fill this knowledge gap by studying the surface chemistry of purified CsPbBrxI3-x NCs as the model system, which in itself is considered a promising candidate for pure-red light-emitting diodes and top-cells for tandem photovoltaics. Interestingly, we find that as the polarity of the antisolvent increases (from methyl acetate to acetone to butanol), there is a blueshift in the photoluminescence (PL) peak of the NCs along with a decrease in PL quantum yield (PLQY). Through transmission electron microscopy and X-ray photoemission spectroscopy measurements, we find that these changes in PL properties arise from antisolvent-induced iodide removal, which leads to a change in halide composition and, thus, the bandgap. Using detailed nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) measurements along with density functional theory calculations, we propose that more polar antisolvents favor the detachment of the oleic acid and oleylamine ligands, which undergo amide condensation reactions, leading to the removal of iodide anions from the NC surface bound to these ligands. This work shows that careful selection of low-polarity antisolvents is a critical part of designing the synthesis of NCs to achieve high PLQYs with minimal defect-mediated phase segregation.

8.
Adv Mater ; 34(36): e2202163, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35866352

ABSTRACT

Mixed-halide mixed-cation hybrid perovskites are among the most promising perovskite compositions for application in a variety of optoelectronic devices due to their high performance, low cost, and bandgap-tuning capabilities. Instability pathways such as those driven by ionic migration, however, continue to hinder their further progress. Here, an operando variable-pitch synchrotron grazing-incidence wide-angle X-ray scattering technique is used to track the surface and bulk structural changes in mixed-halide mixed-cation perovskite solar cells under continuous load and illumination. By monitoring the evolution of the material structure, it is demonstrated that halide remixing along the electric field and illumination direction during operation hinders phase segregation and limits device instability. Correlating the evolution with directionality- and depth-dependent analyses, it is proposed that this halide remixing is induced by an electrostrictive effect acting along the substrate out-of-plane direction. However, this stabilizing effect is overwhelmed by competing halide demixing processes in devices exposed to humid air or with poorer starting performance. The findings shed new light on understanding halide de- and re-mixing competitions and their impact on device longevity. These operando techniques allow real-time tracking of the structural evolution in full optoelectronic devices and unveil otherwise inaccessible insights into rapid structural evolution under external stress conditions.

9.
Adv Mater ; 34(1): e2105942, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34658076

ABSTRACT

Halide perovskite materials offer an ideal playground for easily tuning their color and, accordingly, the spectral range of their emitted light. In contrast to common procedures, this work demonstrates that halide substitution in Ruddlesden-Popper perovskites not only progressively modulates the bandgap, but it can also be a powerful tool to control the nanoscale phase segregation-by adjusting the halide ratio and therefore the spatial distribution of recombination centers. As a result, thin films of chloride-rich perovskite are engineered-which appear transparent to the human eye-with controlled tunable emission in the green. This is due to a rational halide substitution with iodide or bromide leading to a spatial distribution of phases where the minor component is responsible for the tunable emission, as identified by combined hyperspectral photoluminescence imaging and elemental mapping. This work paves the way for the next generation of highly tunable transparent emissive materials, which can be used as light-emitting pixels in advanced and low-cost optoelectronics.

10.
Adv Sci (Weinh) ; 8(23): e2101502, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34672118

ABSTRACT

Hybrid integration of n-type oxide with p-type polymer transistors is an attractive approach for realizing high performance complementary circuits on flexible substrates. However, the stability of solution-processed oxide transistors is limiting the lifetime and reliability of such circuits. Oxygen vacancies are the main defect degrading metal oxide transistor performance when ambient oxygen adsorbs onto metal oxide films. Here, an effective surface passivation treatment based on negative oxygen ion exposure combined with UV light is demonstrated, that is able to significantly reduce surface oxygen vacancy concentration and improve the field effect mobility to values up to 41 cm2 V-1 s-1 with high on-off current ratio of 108 . The treatment also reduces the threshold voltage shift after 2 days in air from 5 to 0.07 V. The improved stability of the oxide transistors also improves the lifetime of hybrid complementary circuits and stable operation of complementary, analog amplifiers is confirmed for 60 days in air. The suggested approach is facile and can be widely applicable for flexible electronics using low-temperature solution-processed metal oxide semiconductors.

11.
Sci Adv ; 7(32)2021 Aug.
Article in English | MEDLINE | ID: mdl-34348902

ABSTRACT

Efficient energy transport is desirable in organic semiconductor (OSC) devices. However, photogenerated excitons in OSC films mostly occupy highly localized states, limiting exciton diffusion coefficients to below ~10-2 cm2/s and diffusion lengths below ~50 nm. We use ultrafast optical microscopy and nonadiabatic molecular dynamics simulations to study well-ordered poly(3-hexylthiophene) nanofiber films prepared using living crystallization-driven self-assembly, and reveal a highly efficient energy transport regime: transient exciton delocalization, where energy exchange with vibrational modes allows excitons to temporarily re-access spatially extended states under equilibrium conditions. We show that this enables exciton diffusion constants up to 1.1 ± 0.1 cm2/s and diffusion lengths of 300 ± 50 nm. Our results reveal the dynamic interplay between localized and delocalized exciton configurations at equilibrium conditions, calling for a re-evaluation of exciton dynamics and suggesting design rules to engineer efficient energy transport in OSC device architectures not based on restrictive bulk heterojunctions.

12.
ACS Nano ; 14(11): 14740-14760, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33044058

ABSTRACT

Luminescent colloidal CdSe nanorings are a recently developed type of semiconductor structure that have attracted interest due to the potential for rich physics arising from their nontrivial toroidal shape. However, the exciton properties and dynamics of these materials with complex topology are not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and single-particle measurements to study these materials. We find that on transformation of CdSe nanoplatelets to nanorings, by perforating the center of platelets, the emission lifetime decreases and the emission spectrum broadens due to ensemble variations in the ring size and thickness. The reduced PL quantum yield of nanorings (∼10%) compared to platelets (∼30%) is attributed to an enhanced coupling between (i) excitons and CdSe LO-phonons at 200 cm-1 and (ii) negatively charged selenium-rich traps, which give nanorings a high surface charge (∼-50 mV). Population of these weakly emissive trap sites dominates the emission properties with an increased trap emission at low temperatures relative to excitonic emission. Our results provide a detailed picture of the nature of excitons in nanorings and the influence of phonons and surface charge in explaining the broad shape of the PL spectrum and the origin of PL quantum yield losses. Furthermore, they suggest that the excitonic properties of nanorings are not solely a consequence of the toroidal shape but also a result of traps introduced by puncturing the platelet center.

13.
Sci Adv ; 5(2): eaav2012, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30793032

ABSTRACT

One source of instability in perovskite solar cells (PSCs) is interfacial defects, particularly those that exist between the perovskite and the hole transport layer (HTL). We demonstrate that thermally evaporated dopant-free tetracene (120 nm) on top of the perovskite layer, capped with a lithium-doped Spiro-OMeTAD layer (200 nm) and top gold electrode, offers an excellent hole-extracting stack with minimal interfacial defect levels. For a perovskite layer interfaced between these graded HTLs and a mesoporous TiO2 electron-extracting layer, its photoluminescence yield reaches 15% compared to 5% for the perovskite layer interfaced between TiO2 and Spiro-OMeTAD alone. For PSCs with graded HTL structure, we demonstrate efficiency of up to 21.6% and an extended power output of over 550 hours of continuous illumination at AM1.5G, retaining more than 90% of the initial performance and thus validating our approach. Our findings represent a breakthrough in the construction of stable PSCs with minimized nonradiative losses.

14.
ACS Energy Lett ; 4(9): 2301-2307, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31544151

ABSTRACT

Mixed lead-tin halide perovskites have sufficiently low bandgaps (∼1.2 eV) to be promising absorbers for perovskite-perovskite tandem solar cells. Previous reports on lead-tin perovskites have typically shown poor optoelectronic properties compared to neat lead counterparts: short photoluminescence lifetimes (<100 ns) and low photoluminescence quantum efficiencies (<1%). Here, we obtain films with carrier lifetimes exceeding 1 µs and, through addition of small quantities of zinc iodide to the precursor solutions, photoluminescence quantum efficiencies under solar illumination intensities of 2.5%. The zinc additives also substantially enhance the film stability in air, and we use cross-sectional chemical mapping to show that this enhanced stability is because of a reduction in tin-rich clusters. By fabricating field-effect transistors, we observe that the introduction of zinc results in controlled p-doping. Finally, we show that zinc additives also enhance power conversion efficiencies and the stability of solar cells. Our results demonstrate substantially improved low-bandgap perovskites for solar cells and versatile electronic applications.

15.
Adv Mater ; 31(42): e1902374, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31489713

ABSTRACT

Mixed-halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution-processed triple-cation mixed-halide (Cs0.06 MA0.15 FA0.79 )Pb(Br0.4 I0.6 )3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar-equivalent illumination. It is found that the illumination leads to localized surface sites of iodide-rich perovskite intermixed with passivating PbI2 material. Time- and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide-rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed-halide mixed-cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.

16.
ACS Energy Lett ; 4(10): 2360-2367, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31633033

ABSTRACT

The highest reported efficiencies of metal halide perovskite (MHP) solar cells are all based on mixed perovskites, such as (FA,MA,Cs)Pb(I1-x Br x )3. Despite demonstrated structural changes induced by light soaking, it is unclear how the charge carrier dynamics are affected across this entire material family. Here, various (FA,MA,Cs)Pb(I1-x Br x )3 perovskite films are light-soaked in nitrogen, and changes in optoelectronic properties are investigated through time-resolved microwave conductivity (TRMC) and optical and structural techniques. To fit the TRMC decay kinetics obtained for pristine (FA,MA,Cs)Pb(I1-x Br x )3 for various excitation densities, additional shallow states have to be included, which are not required for describing TRMC traces of single-cation MHPs. These shallow states can, independently of x, be removed by light soaking, which leads to a reduction in the imbalance between the diffusional motion of electrons and holes. We interpret the shallow states as a result of initially well-intermixed halide distributions, which upon light soaking segregate into domains with distinct band gaps.

17.
ACS Energy Lett ; 3(11): 2671-2678, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30701195

ABSTRACT

Halide perovskites passivated with potassium or rubidium show superior photovoltaic device performance compared to unpassivated samples. However, it is unclear which passivation route is more effective for film stability. Here, we directly compare the optoelectronic properties and stability of thin films when passivating triple-cation perovskite films with potassium or rubidium species. The optoelectronic and chemical studies reveal that the alloyed perovskites are tolerant toward higher loadings of potassium than rubidium. Whereas potassium complexes with bromide from the perovskite precursor solution to form thin surface passivation layers, rubidium additives favor the formation of phase-segregated micron-sized rubidium halide crystals. This tolerance to higher loadings of potassium allows us to achieve superior luminescent properties with potassium passivation. We also find that exposure to a humid atmosphere drives phase segregation and grain coalescence for all compositions, with the rubidium-passivated sample showing the highest sensitivity to nonperovskite phase formation. Our work highlights the benefits but also the limitations of these passivation approaches in maximizing both optoelectronic properties and the stability of perovskite films.

SELECTION OF CITATIONS
SEARCH DETAIL