Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 158(3): 579-92, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25083869

ABSTRACT

The p53 tumor suppressor coordinates a series of antiproliferative responses that restrict the expansion of malignant cells, and as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor-cell-associated protein nestin in an Sp1/3 transcription-factor-dependent manner and that Nestin is required for tumor initiation in vivo. Moreover, loss of p53 facilitates dedifferentiation of mature hepatocytes into nestin-positive progenitor-like cells, which are poised to differentiate into hepatocellular carcinomas (HCCs) or cholangiocarcinomas (CCs) in response to lineage-specific mutations that target Wnt and Notch signaling, respectively. Many human HCCs and CCs show elevated nestin expression, which correlates with p53 loss of function and is associated with decreased patient survival. Therefore, transcriptional repression of Nestin by p53 restricts cellular plasticity and tumorigenesis in liver cancer.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Nestin/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic , Hepatocytes/metabolism , Humans , Liver Neoplasms/pathology , Mice , Prognosis , Sp1 Transcription Factor/metabolism , Sp3 Transcription Factor/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism
3.
Gastroenterology ; 166(5): 886-901.e7, 2024 05.
Article in English | MEDLINE | ID: mdl-38096955

ABSTRACT

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Subject(s)
Bile Duct Neoplasms , Cancer-Associated Fibroblasts , Cholangiocarcinoma , Hepatic Stellate Cells , Protein-Lysine 6-Oxidase , Tumor Microenvironment , Humans , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/enzymology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/enzymology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/enzymology , Gene Expression Regulation, Neoplastic , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatic Stellate Cells/enzymology , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/enzymology , Oxidative Phosphorylation , Protein-Lysine 6-Oxidase/metabolism , Protein-Lysine 6-Oxidase/genetics , Signal Transduction
4.
Gut ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857989

ABSTRACT

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN: PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS: PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION: Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.

5.
Gut ; 73(3): 496-508, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-37758326

ABSTRACT

OBJECTIVE: Cytotoxic agents are the cornerstone of treatment for patients with advanced intrahepatic cholangiocarcinoma (iCCA), despite heterogeneous benefit. We hypothesised that the pretreatment molecular profiles of diagnostic biopsies can predict patient benefit from chemotherapy and define molecular bases of innate chemoresistance. DESIGN: We identified a cohort of advanced iCCA patients with comparable baseline characteristics who diverged as extreme outliers on chemotherapy (survival <6 m in rapid progressors, RP; survival >23 m in long survivors, LS). Diagnostic biopsies were characterised by digital pathology, then subjected to whole-transcriptome profiling of bulk and geospatially macrodissected tissue regions. Spatial transcriptomics of tumour-infiltrating myeloid cells was performed using targeted digital spatial profiling (GeoMx). Transcriptome signatures were evaluated in multiple cohorts of resected cancers. Signatures were also characterised using in vitro cell lines, in vivo mouse models and single cell RNA-sequencing data. RESULTS: Pretreatment transcriptome profiles differentiated patients who would become RPs or LSs on chemotherapy. Biologically, this signature originated from altered tumour-myeloid dynamics, implicating tumour-induced immune tolerogenicity with poor response to chemotherapy. The central role of the liver microenviroment was confrmed by the association of the RPLS transcriptome signature with clinical outcome in iCCA but not extrahepatic CCA, and in liver metastasis from colorectal cancer, but not in the matched primary bowel tumours. CONCLUSIONS: The RPLS signature could be a novel metric of chemotherapy outcome in iCCA. Further development and validation of this transcriptomic signature is warranted to develop precision chemotherapy strategies in these settings.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Animals , Mice , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Gene Expression Profiling , Transcriptome , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism
6.
Hepatology ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37972940

ABSTRACT

The development of cholangiocarcinoma spans years, if not decades, during which the immune system becomes corrupted and permissive to primary tumor development and metastasis. This involves subversion of local immunity at tumor sites, as well as systemic immunity and the wider host response. While immune dysfunction is a hallmark of all cholangiocarcinoma, the specific steps of the cancer-immunity cycle that are perturbed differ between patients. Heterogeneous immune functionality impacts the evolutionary development, pathobiological behavior, and therapeutic response of these tumors. Integrative genomic analyses of thousands of primary tumors have supported a biological rationale for immune-based stratification of patients, encompassing immune cell composition and functionality. However, discerning immune alterations responsible for promoting tumor initiation, maintenance, and progression from those present as bystander events remains challenging. Functionally uncoupling the tumor-promoting or tumor-suppressing roles of immune profiles will be critical for identifying new immunomodulatory treatment strategies and associated biomarkers for patient stratification. This review will discuss the immunogenomics of cholangiocarcinoma, including the impact of genomic alterations on immune functionality, subversion of the cancer-immunity cycle, as well as clinical implications for existing and novel treatment strategies.

7.
Gut ; 72(9): 1698-1708, 2023 09.
Article in English | MEDLINE | ID: mdl-37072179

ABSTRACT

OBJECTIVE: Bile acid diarrhoea (BAD) is debilitating yet treatable, but it remains underdiagnosed due to challenging diagnostics. We developed a blood test-based method to guide BAD diagnosis. DESIGN: We included serum from 50 treatment-naive patients with BAD diagnosed by gold standard 75selenium homotaurocholic acid test, 56 feature-matched controls and 37 patients with non-alcoholic fatty liver disease (NAFLD). Metabolomes were generated using mass spectrometry covering 1295 metabolites and compared between groups. Machine learning was used to develop a BAD Diagnostic Score (BDS). RESULTS: Metabolomes of patients with BAD significantly differed from controls and NAFLD. We detected 70 metabolites with a discriminatory performance in the discovery set with an area under receiver-operating curve metric above 0.80. Logistic regression modelling using concentrations of decanoylcarnitine, cholesterol ester (22:5), eicosatrienoic acid, L-alpha-lysophosphatidylinositol (18:0) and phosphatidylethanolamine (O-16:0/18:1) distinguished BAD from controls with a sensitivity of 0.78 (95% CI 0.64 to 0.89) and a specificity of 0.93 (95% CI 0.83 to 0.98). The model was independent of covariates (age, sex, body mass index) and distinguished BAD from NAFLD irrespective of fibrosis stage. BDS outperformed other blood test-based tests (7-alpha-hydroxy-4-cholesten-3-one and fibroblast growth factor 19) currently under development. CONCLUSIONS: BDS derived from serum metabolites in a single-blood sample showed robust identification of patients with BAD with superior specificity and sensitivity compared with current blood test-based diagnostics.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Bile Acids and Salts , Lipidomics , Diarrhea/diagnosis
8.
J Hepatol ; 78(2): 364-375, 2023 02.
Article in English | MEDLINE | ID: mdl-36848245

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a heterogeneous and lethal malignancy, the molecular origins of which remain poorly understood. MicroRNAs (miRs) target diverse signalling pathways, functioning as potent epigenetic regulators of transcriptional output. We aimed to characterise miRNome dysregulation in CCA, including its impact on transcriptome homeostasis and cell behaviour. METHODS: Small RNA sequencing was performed on 119 resected CCAs, 63 surrounding liver tissues, and 22 normal livers. High-throughput miR mimic screens were performed in three primary human cholangiocyte cultures. Integration of patient transcriptomes and miRseq together with miR screening data identified an oncogenic miR for characterization. MiR-mRNA interactions were investigated by a luciferase assay. MiR-CRISPR knockout cells were generated and phenotypically characterized in vitro (proliferation, migration, colony, mitochondrial function, glycolysis) and in vivo using subcutaneous xenografts. RESULTS: In total, 13% (140/1,049) of detected miRs were differentially expressed between CCA and surrounding liver tissues, including 135 that were upregulated in tumours. CCA tissues were characterised by higher miRNome heterogeneity and miR biogenesis pathway expression. Unsupervised hierarchical clustering of tumour miRNomes identified three subgroups, including distal CCA-enriched and IDH1 mutant-enriched subgroups. High-throughput screening of miR mimics uncovered 71 miRs that consistently increased proliferation of three primary cholangiocyte models and were upregulated in CCA tissues regardless of anatomical location, among which only miR-27a-3p had consistently increased expression and activity in several cohorts. FoxO signalling was predominantly downregulated by miR-27a-3p in CCA, partially through targeting of FOXO1. MiR-27a knockout increased FOXO1 levels in vitro and in vivo, impeding tumour behaviour and growth. CONCLUSIONS: The miRNomes of CCA tissues are highly remodelled, impacting transcriptome homeostasis in part through regulation of transcription factors like FOXO1. MiR-27a-3p arises as an oncogenic vulnerability in CCA. IMPACT AND IMPLICATIONS: Cholangiocarcinogenesis entails extensive cellular reprogramming driven by genetic and non-genetic alterations, but the functional roles of these non-genetic events remain poorly understood. By unveiling global miRNA upregulation in patient tumours and their functional ability to increase proliferation of cholangiocytes, these small non-coding RNAs are implicated as critical non-genetic alterations promoting biliary tumour initiation. These findings identify possible mechanisms for transcriptome rewiring during transformation, with potential implications for patient stratification.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Forkhead Box Protein O1 , MicroRNAs , Humans , Bile Duct Neoplasms/genetics , Bile Ducts , Bile Ducts, Intrahepatic , Cholangiocarcinoma/genetics , MicroRNAs/genetics , Forkhead Box Protein O1/metabolism
9.
J Hepatol ; 79(1): 93-108, 2023 07.
Article in English | MEDLINE | ID: mdl-36868481

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA), heterogeneous biliary tumours with dismal prognosis, lacks accurate early diagnostic methods especially important for individuals at high-risk (i.e. those with primary sclerosing cholangitis [PSC]). Here, we searched for protein biomarkers in serum extracellular vesicles (EVs). METHODS: EVs from patients with isolated PSC (n = 45), concomitant PSC-CCA (n = 44), PSC who developed CCA during follow-up (PSC to CCA; n = 25), CCAs from non-PSC aetiology (n = 56), and hepatocellular carcinoma (n = 34) and healthy individuals (n = 56) were characterised by mass spectrometry. Diagnostic biomarkers for PSC-CCA, non-PSC CCA, or CCAs regardless of aetiology (Pan-CCAs) were defined and validated by ELISA. Their expression was evaluated in CCA tumours at a single-cell level. Prognostic EV biomarkers for CCA were investigated. RESULTS: High-throughput proteomics of EVs identified diagnostic biomarkers for PSC-CCA, non-PSC CCA, or Pan-CCA, and for the differential diagnosis of intrahepatic CCA and hepatocellular carcinoma, which were cross-validated by ELISA using total serum. Machine learning-based algorithms disclosed CRP/FIBRINOGEN/FRIL for the diagnosis of PSC-CCA (local disease [LD]) vs. isolated PSC (AUC = 0.947; odds ratio [OR] =36.9) and, combined with carbohydrate antigen 19-9, overpowers carbohydrate antigen 19-9 alone. CRP/PIGR/VWF allowed the diagnosis of LD non-PSC CCAs vs. healthy individuals (AUC = 0.992; OR = 387.5). It is noteworthy that CRP/FRIL accurately diagnosed LD Pan-CCA (AUC = 0.941; OR = 89.4). Levels of CRP/FIBRINOGEN/FRIL/PIGR showed predictive capacity for CCA development in PSC before clinical evidence of malignancy. Multi-organ transcriptomic analysis revealed that serum EV biomarkers were mostly expressed in hepatobiliary tissues, and single-cell RNA sequencing and immunofluorescence analysis of CCA tumours showed their presence mainly in malignant cholangiocytes. Multivariable analysis unveiled EV prognostic biomarkers, with COMP/GNAI2/CFAI and ACTN1/MYCT1/PF4V associated negatively and positively with patients' survival, respectively. CONCLUSIONS: Serum EVs contain protein biomarkers for the prediction, early diagnosis, and prognostication of CCA that are detectable using total serum, representing a tumour cell-derived liquid biopsy tool for personalised medicine. IMPACT AND IMPLICATIONS: The accuracy of current imaging tests and circulating tumour biomarkers for cholangiocarcinoma (CCA) diagnosis is far from satisfactory. Most CCAs are considered sporadic, although up to 20% of patients with primary sclerosing cholangitis (PSC) develop CCA during their lifetime, constituting a major cause of PSC-related death. This international study has proposed protein-based and aetiology-related logistic models with predictive, diagnostic, or prognostic capacities by combining two to four circulating protein biomarkers, moving a step forward into personalised medicine. These novel liquid biopsy tools may allow the (i) easy and non-invasive diagnosis of sporadic CCAs, (ii) identification of patients with PSC with higher risk for CCA development, (iii) establishment of cost-effective surveillance programmes for the early detection of CCA in high-risk populations (e.g. PSC), and (iv) prognostic stratification of patients with CCA, which, altogether, may increase the number of cases eligible for potentially curative options or to receive more successful treatments, decreasing CCA-related mortality.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Cholangitis, Sclerosing , Liver Neoplasms , Humans , Cholangitis, Sclerosing/complications , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/complications , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/etiology , Cholangiocarcinoma/metabolism , Biomarkers, Tumor , Early Diagnosis , Liquid Biopsy , Bile Ducts, Intrahepatic/pathology , Liver Neoplasms/etiology , Liver Neoplasms/complications , Carbohydrates , Nuclear Proteins
10.
Hepatology ; 75(5): 1154-1168, 2022 05.
Article in English | MEDLINE | ID: mdl-34719787

ABSTRACT

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a malignancy arising from biliary epithelial cells of intra- and extrahepatic bile ducts with dismal prognosis and few nonsurgical treatments available. Despite recent success in the immunotherapy-based treatment of many tumor types, this has not been successfully translated to CCA. Mucosal-associated invariant T (MAIT) cells are cytotoxic innate-like T cells highly enriched in the human liver, where they are located in close proximity to the biliary epithelium. Here, we aimed to comprehensively characterize MAIT cells in intrahepatic (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS: Liver tissue from patients with CCA was used to study immune cells, including MAIT cells, in tumor-affected and surrounding tissue by immunohistochemistry, RNA-sequencing, and multicolor flow cytometry. The iCCA and pCCA tumor microenvironment was characterized by the presence of both cytotoxic T cells and high numbers of regulatory T cells. In contrast, MAIT cells were heterogenously lost from tumors compared to the surrounding liver tissue. This loss possibly occurred in response to increased bacterial burden within tumors. The residual intratumoral MAIT cell population exhibited phenotypic and transcriptomic alterations, but a preserved receptor repertoire for interaction with tumor cells. Finally, the high presence of MAIT cells in livers of iCCA patients predicted long-term survival in two independent cohorts and was associated with a favorable antitumor immune signature. CONCLUSIONS: MAIT cell tumor infiltration associates with favorable immunological fitness and predicts survival in CCA.


Subject(s)
Bile Duct Neoplasms , Bile Ducts, Extrahepatic , Cholangiocarcinoma , Mucosal-Associated Invariant T Cells , Bile Duct Neoplasms/pathology , Bile Ducts, Extrahepatic/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/pathology , Humans , Tumor Microenvironment
11.
Hepatology ; 76(6): 1617-1633, 2022 12.
Article in English | MEDLINE | ID: mdl-35030285

ABSTRACT

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS: The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS: Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Mice , Animals , Humans , Proteome , Cell Line, Tumor , Cholangiocarcinoma/pathology , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Lipids/therapeutic use , Cell Proliferation
12.
Histopathology ; 82(5): 722-730, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36583256

ABSTRACT

BACKGROUND: Hepatocellular adenoma (HCA) is a rare liver tumour, which can have atypical morphological features such as cytological atypia, pseudoglandular architecture, and altered reticulin framework. Little is known about the genetic and epigenetic alterations of such HCAs and whether they show the alterations classically found in hepatocellular carcinoma (HCC) or in HCA without atypical morphology. METHODS: We analysed five HCAs with atypical morphological features and one HCA with transition to HCC. Every tumour was subtyped by immunohistochemistry, sequenced by a targeted NGS panel, and analysed on a DNA methylation microarray. RESULTS: Subtyping of the five HCAs with atypical features revealed two ß-catenin mutated HCA (b-HCA), two ß-catenin mutated inflammatory HCA (b-IHCA), and one sonic hedgehog activated HCA (shHCA). None of them showed mutations typically found in HCC, such as, e.g. TERT or TP53 mutations. The epigenomic pattern of HCAs with atypical morphological features clustered with reference data for HCAs without atypical morphological features but not with HCC. Similarly, phyloepigenetic trees using the DNA methylation data reproducibly showed that HCAs with morphological atypia are much more similar to nonmalignant samples than to malignant samples. Finally, atypical HCAs showed no relevant copy number variations (CNV). CONCLUSION: In our series, mutational, DNA methylation, as well as CNV analyses, supported a relationship of atypical HCAs with nonatypical HCAs rather than with HCC. Therefore, in cases with difficult differential diagnosis between HCC and HCA, it might be advisable to perform targeted sequencing and/or combined methylation/copy number profiling.


Subject(s)
Adenoma, Liver Cell , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Adenoma, Liver Cell/pathology , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , beta Catenin/genetics , DNA Copy Number Variations , Hedgehog Proteins , Epigenesis, Genetic
13.
Liver Int ; 43(10): 2256-2274, 2023 10.
Article in English | MEDLINE | ID: mdl-37534739

ABSTRACT

BACKGROUND AND AIMS: The mechanisms governing the progression of non-alcoholic fatty liver disease (NAFLD) towards steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain elusive. Here, we evaluated the role of hsa-miRNA-21-5p in NASH-related hepatocarcinogenesis. METHODS: Hepatic hsa-miR-21-5p expression was evaluated in two cohorts of patients with biopsy-proven NAFLD (n = 199) or HCC (n = 366 HCC and n = 11 NAFLD-HCC). Serum/liver metabolomic profiles were correlated with hsa-miR-21-5p in NAFLD obese patients. Wild-type (WT) and Mir21 KO mice were fed a choline-deficient, amino acid-defined (CDAA) diet for 32 and 66 weeks to induce NASH and NASH-HCC, respectively. RESULTS: In obese individuals, hsa-miR-21-5p expression increased with NAFLD severity and associated with a hepatic lipotoxic profile. CDAA-fed WT mice displayed increased hepatic mmu-miR-21-5p levels and progressively developed NASH and fibrosis, with livers presenting macroscopically discernible pre-neoplastic nodules, hyperplastic foci and deregulated cancer-related pathways. Mir21 KO mice exhibited peroxisome-proliferator-activated receptor α (PPARα) activation, augmented mitochondrial activity, reduced liver injury and NAS below the threshold for NASH diagnosis, with the pro-inflammatory/fibrogenic milieu reversing to baseline levels. In parallel, Mir21 KO mice displayed reduced number of pre-neoplastic nodules, hepatocyte proliferation and activation of oncogenic signalling, being protected from NASH-associated carcinogenesis. The hsa-miRNA-21-5p/PPARα pathway was similarly deregulated in patients with HCC- or NASH-related HCC, correlating with HCC markers and worse prognosis. CONCLUSIONS: Hsa-miR-21-5p is a key inducer of whole-spectrum NAFLD progression, from simple steatosis to NASH and NASH-associated carcinogenesis. The inhibition of hsa-miR-21-5p, leading to a pro-metabolic profile, might constitute an appealing therapeutic approach to ameliorate NASH and prevent progression towards HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , PPAR alpha , Liver/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Obesity/metabolism , Choline/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Semin Liver Dis ; 42(2): 202-211, 2022 05.
Article in English | MEDLINE | ID: mdl-35738258

ABSTRACT

Cholangiocarcinoma (CCA) is the second most common type of primary liver cancer. Due to its often-silent manifestation, sporadic nature, and typically late clinical presentation, it remains difficult to diagnose and lacks effective nonsurgical therapeutic options. Extensive research aiming in understanding the mechanisms underlying this disease have provided strong evidence for the significance of epigenetics contributing to its onset, progression, and dissemination. This dysregulation in a myriad of signaling pathways, leading to malignancy, spans altered deoxyribonucleic acid and histone methylation, histone acetylation, and chromatin remodeling, as well as genetic modifications in essential genes controlling these epigenetic processes. An advantage to epigenetic modifications is that they, compared with mutations, are reversible and can partially be controlled by inhibiting the responsible enzymatic machinery. This opens novel possibilities for developing new treatment modalities with benefit for CCA patients.In this article, we have reviewed the current status of epigenome modifications described in CCA, including the role of posttranslational histone modifications and chromatin remodeling, as well as novel advances in treatment options.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/therapy , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/therapy , Epigenesis, Genetic , Epigenomics , Histones/metabolism , Humans , Methylation
15.
J Hepatol ; 77(4): 1047-1058, 2022 10.
Article in English | MEDLINE | ID: mdl-35750139

ABSTRACT

BACKGROUND & AIMS: Late diagnosis is a critical factor undermining clinical management of patients with biliary tract cancer (BTC). While biliary tumours display extensive inter-patient heterogeneity, the host immune response may be comparatively homogenous, providing diagnostic opportunities. Herein, we investigated whether cancer-associated systemic reprogramming could be detected non-invasively to improve diagnosis of BTC. METHODS: In this prospective Danish study, whole blood (WB) microRNA (miRNA) profiling was performed in samples from 218 patients with BTC, 99 healthy participants, and 69 patients with differential diagnoses split into discovery (small RNA-sequencing) and validation (RT-qPCR) cohorts. miRNA expression and activity were further investigated in 119 and 660 BTC tissues, respectively. RESULTS: Four WB miRNAs (let-7a-3p, miR-92b-5p, miR-145-3p, miR-582-3p) were identified and validated as diagnostic of BTC on univariable analysis. Two diagnostic miRNA indexes were subsequently identified that were elevated in patients with BTC and in patients with differential diagnoses, compared to healthy participants. The combination of these miRNA indexes with serum CA 19-9 significantly improved the diagnostic performance of CA 19-9 alone, consistently achieving superior AUC values irrespective of clinical setting (minimum AUC >0.84) or tumour location (minimum AUC >0.87). The diagnostic information captured by miRNA indexes was not recapitulated by routine clinical measurements. Index miRNA expression in BTC tissues was associated with distinct pathobiological and immune features. CONCLUSIONS: WB miRNA profiles are altered in patients with BTC. Quantification of miRNA indexes in combination with serum CA 19-9 has the potential to improve early diagnosis of BTC, pending further validation. LAY SUMMARY: Surgery is currently the only curative intervention for patients with biliary tract cancer (BTC). However, resection is not possible for most patients who are diagnosed with late-stage disease. With the aim of identifying new early diagnostic opportunities, we analysed circulating microRNAs (small non-coding RNAs whose role in cancer is being increasingly recognised) in whole blood samples. We identified a microRNA signature that could distinguish patients with BTC from healthy participants. These miRNAs significantly improved the diagnostic potential of the routinely measured biomarker, CA 19-9, and were implicated in distinct immune processes in tumour tissues.


Subject(s)
Biliary Tract Neoplasms , Circulating MicroRNA , MicroRNAs , Biliary Tract Neoplasms/diagnosis , Biliary Tract Neoplasms/genetics , Biomarkers, Tumor/genetics , Gene Expression Profiling , Humans , MicroRNAs/genetics , Prospective Studies
16.
J Hepatol ; 77(1): 177-190, 2022 07.
Article in English | MEDLINE | ID: mdl-35217064

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) comprises a heterogeneous group of malignant tumors associated with dismal prognosis. Alterations in post-translational modifications (PTMs), including NEDDylation, result in abnormal protein dynamics, cell disturbances and disease. Herein, we investigate the role of NEDDylation in CCA development and progression. METHODS: Levels and functions of NEDDylation, together with response to pevonedistat (NEDDylation inhibitor) or CRISPR/Cas9 against NAE1 were evaluated in vitro, in vivo and/or in patients with CCA. The development of preneoplastic lesions in Nae1+/- mice was investigated using an oncogene-driven CCA model. The impact of NEDDylation in CCA cells on tumor-stroma crosstalk was assessed using CCA-derived cancer-associated fibroblasts (CAFs). Proteomic analyses were carried out by mass-spectrometry. RESULTS: The NEDDylation machinery was found overexpressed and overactivated in human CCA cells and tumors. Most NEDDylated proteins found upregulated in CCA cells, after NEDD8-immunoprecipitation and further proteomics, participate in the cell cycle, proliferation or survival. Genetic (CRISPR/Cas9-NAE1) and pharmacological (pevonedistat) inhibition of NEDDylation reduced CCA cell proliferation and impeded colony formation in vitro. NEDDylation depletion (pevonedistat or Nae1+/- mice) halted tumorigenesis in subcutaneous, orthotopic, and oncogene-driven models of CCA in vivo. Moreover, pevonedistat potentiated chemotherapy-induced cell death in CCA cells in vitro. Mechanistically, impaired NEDDylation triggered the accumulation of both cullin RING ligase and NEDD8 substrates, inducing DNA damage and cell cycle arrest. Furthermore, impaired NEDDylation in CCA cells reduced the secretion of proteins involved in fibroblast activation, angiogenesis, and oncogenic pathways, ultimately hampering CAF proliferation and migration. CONCLUSION: Aberrant protein NEDDylation contributes to cholangiocarcinogenesis by promoting cell survival and proliferation. Moreover, NEDDylation impacts the CCA-stroma crosstalk. Inhibition of NEDDylation with pevonedistat may represent a potential therapeutic strategy for patients with CCA. LAY SUMMARY: Little is known about the role of post-translational modifications of proteins in cholangiocarcinoma development and progression. Herein, we show that protein NEDDylation is upregulated and hyperactivated in cholangiocarcinoma, promoting tumor growth. Pharmacological inhibition of NEDDylation halts cholangiocarcinogenesis and could be an effective therapeutic strategy to tackle these tumors.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Bile Duct Neoplasms/etiology , Bile Ducts, Intrahepatic , Cell Line, Tumor , Cholangiocarcinoma/etiology , Humans , Mice , Models, Theoretical , Proteomics , Signal Transduction
17.
J Hepatol ; 76(5): 1109-1121, 2022 05.
Article in English | MEDLINE | ID: mdl-35167909

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a rare and heterogeneous biliary cancer, whose incidence and related mortality is increasing. This study investigates the clinical course of CCA and subtypes (intrahepatic [iCCA], perihilar [pCCA], and distal [dCCA]) in a pan-European cohort. METHODS: The ENSCCA Registry is a multicenter observational study. Patients were included if they had a histologically proven diagnosis of CCA between 2010-2019. Demographic, histomorphological, biochemical, and clinical studies were performed. RESULTS: Overall, 2,234 patients were enrolled (male/female=1.29). iCCA (n = 1,243) was associated with overweight/obesity and chronic liver diseases involving cirrhosis and/or viral hepatitis; pCCA (n = 592) with primary sclerosing cholangitis; and dCCA (n = 399) with choledocholithiasis. At diagnosis, 42.2% of patients had local disease, 29.4% locally advanced disease (LAD), and 28.4% metastatic disease (MD). Serum CEA and CA19-9 showed low diagnostic sensitivity, but their concomitant elevation was associated with increased risk of presenting with LAD (odds ratio 2.16; 95% CI 1.43-3.27) or MD (odds ratio 5.88; 95% CI 3.69-9.25). Patients undergoing resection (50.3%) had the best outcomes, particularly with negative-resection margin (R0) (median overall survival [mOS] = 45.1 months); however, margin involvement (R1) (hazard ratio 1.92; 95% CI 1.53-2.41; mOS = 24.7 months) and lymph node invasion (hazard ratio 2.13; 95% CI 1.55-2.94; mOS = 23.3 months) compromised prognosis. Among patients with unresectable disease (49.6%), the mOS was 10.6 months for those receiving active palliative therapies, mostly chemotherapy (26.2%), and 4.0 months for those receiving best supportive care (20.6%). iCCAs were associated with worse outcomes than p/dCCAs. ECOG performance status, MD and CA19-9 were independent prognostic factors. CONCLUSION: CCA is frequently diagnosed at an advanced stage, a proportion of patients fail to receive cancer-specific therapies, and prognosis remains dismal. Identification of preventable risk factors and implementation of surveillance in high-risk populations are required to decrease cancer-related mortality. LAY SUMMARY: This is, to date, the largest international (pan-European: 26 hospitals and 11 countries) observational study, in which the course of cholangiocarcinoma has been investigated, comparing the 3 subtypes based on the latest International Classification of Diseases 11th Edition (ICD-11) (i.e., intrahepatic [2C12], perihilar [2C18], or distal [2C15] affected bile ducts), which come into effect in 2022. General and tumor-type specific features at diagnosis, risk factors, biomarker accuracy, as well as patient management and outcomes, are presented and compared, outlining the current clinical state of cholangiocarcinoma in Europe.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/epidemiology , Bile Duct Neoplasms/therapy , Bile Ducts, Intrahepatic/pathology , CA-19-9 Antigen , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/epidemiology , Cholangiocarcinoma/therapy , Female , Humans , Male , Prognosis , Registries
18.
RNA ; 26(11): 1726-1730, 2020 11.
Article in English | MEDLINE | ID: mdl-32669295

ABSTRACT

MicroRNA expression is important for gene regulation and deregulated microRNA expression is often observed in diseases such as cancer. The processing of primary microRNA transcripts is an important regulatory step in microRNA biogenesis. Due to low expression level and association with chromatin, primary microRNAs are challenging to study in clinical samples where input material is limited. Here, we present a high-sensitivity targeted method to determine processing efficiency of several hundred primary microRNAs from total RNA that requires relatively few RNA sequencing reads. We validate the method using RNA from HeLa cells and show the applicability to clinical samples by analyzing RNA from normal liver and hepatocellular carcinoma. We identify 24 primary microRNAs with significant changes in processing efficiency from normal liver to hepatocellular carcinoma, among those the highly expressed miRNA-122 and miRNA-21, demonstrating that differential processing of primary microRNAs is occurring and could be involved in disease. With our method presented here we provide means to study pri-miRNA processing in disease from clinical samples.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Sequence Analysis, RNA/methods , Gene Expression Regulation, Neoplastic , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans
19.
Hepatology ; 73 Suppl 1: 62-74, 2021 01.
Article in English | MEDLINE | ID: mdl-32304327

ABSTRACT

Cholangiocarcinoma (CCA) encompasses a heterogeneous collection of malignancies for which diagnostic biomarkers are lacking and population screening is infeasible because of its status as a rare disease. Coupled with high postsurgical recurrence rates among the minority of patients diagnosed at resectable stages, systemic clinical management will inevitably be required for the majority of patients with CCA with recurrent and advanced disease. In this review, we discuss the therapeutic potential of different classes of molecular targets at various stages of development in CCA, including those targeted to the tumor epithelia (oncogenic, developmental, metabolic, epigenomic) and tumor microenvironment (angiogenesis, checkpoint regulation). Furthermore, we discuss the successes and failures of CCA-targeted therapies, emphasizing key lessons learned that should pave the way for future molecular target evaluation in this uncommon yet bona fide target-rich disease.


Subject(s)
Bile Duct Neoplasms/drug therapy , Cholangiocarcinoma/drug therapy , Molecular Targeted Therapy , Epigenome , ErbB Receptors/antagonists & inhibitors , Humans , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Microenvironment/drug effects
20.
Hepatology ; 74(4): 2007-2020, 2021 10.
Article in English | MEDLINE | ID: mdl-33959996

ABSTRACT

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is characterized by high resistance to chemotherapy and poor prognosis. Several oncogenic pathways converge on activation of extracellular signal-regulated kinase 5 (ERK5), whose role in CCA has not been explored. The aim of this study was to investigate the role of ERK5 in the biology of CCA. APPROACH AND RESULTS: ERK5 expression was detected in two established (HuCCT-1 and CCLP-1) and two primary human intrahepatic CCA cell lines (iCCA58 and iCCA60). ERK5 phosphorylation was increased in CCA cells exposed to soluble mediators. In both HuCCT-1 and CCLP-1 cells, ERK5 was localized in the nucleus, and exposure to fetal bovine serum (FBS) further increased the amount of nuclear ERK5. In human CCA specimens, ERK5 mRNA expression was increased in tumor cells and positively correlated with portal invasion. ERK5 protein levels were significantly associated with tumor grade. Growth, migration, and invasion of CCA cells were decreased when ERK5 was silenced using specific short hairpin RNA (shRNA). The inhibitory effects on CCA cell proliferation, migration and invasion were recapitulated by treatment with small molecule inhibitors targeting ERK5. In addition, expression of the angiogenic factors VEGF and angiopoietin 1 was reduced after ERK5 silencing. Conditioned medium from ERK5-silenced cells had a lower ability to induce tube formation by human umbilical vein endothelial cells and to induce migration of myofibroblasts and monocytes/macrophages. In mice, subcutaneous injection of CCLP-1 cells silenced for ERK5 resulted in less frequent tumor development and smaller size of xenografts compared with cells transfected with nontargeting shRNA. CONCLUSIONS: ERK5 is a key mediator of growth and migration of CCA cells and supports a protumorigenic crosstalk between the tumor and the microenvironment.


Subject(s)
Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Cholangiocarcinoma/genetics , Mitogen-Activated Protein Kinase 7/genetics , Animals , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Culture Media, Conditioned , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Macrophages , Mice , Monocytes , Myofibroblasts , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Transplantation , Neovascularization, Pathologic/genetics , Phenotype , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL