Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Biol Chem ; 298(12): 102688, 2022 12.
Article in English | MEDLINE | ID: mdl-36370848

ABSTRACT

Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced ß-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 µM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.


Subject(s)
Cell-Penetrating Peptides , Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Cell-Penetrating Peptides/isolation & purification , Cell-Penetrating Peptides/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Cell Line, Tumor
2.
Int J Mol Sci ; 25(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203273

ABSTRACT

Phenol-soluble modulins (PSMs) are key virulence factors of S. aureus, and they comprise the structural scaffold of biofilm as they self-assemble into functional amyloids. They have been shown to interact with cell membranes as they display toxicity towards human cells through cell lysis, with αPSM3 being the most cytotoxic. In addition to causing cell lysis in mammalian cells, PSMs have also been shown to interact with bacterial cell membranes through antimicrobial effects. Here, we present a study on the effects of lipid bilayers on the aggregation mechanism of αPSM using chemical kinetics to study the effects of lipid vesicles on the aggregation kinetics and using circular dichroism (CD) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) to investigate the corresponding secondary structure of the aggregates. We found that the effects of lipid bilayers on αPSM aggregation were not homogeneous between lipid type and αPSM peptides, although none of the lipids caused changes in the dominating aggregation mechanism. In the case of αPSM3, all types of lipids slowed down aggregation to a varying degree, with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) having the most pronounced effect. For αPSM1, lipids had opposite effects, where DOPC decelerated aggregation and lipopolysaccharide (LPS) accelerated the aggregation, while 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) had no effect. For αPSM4, both DOPG and LPS accelerated the aggregation, but only at high concentration, while DOPC showed no effect. None of the lipids was capable of inducing aggregation of αPSM2. Our data reveal a complex interaction pattern between PSMs peptides and lipid bilayers that causes changes in the aggregation kinetics by affecting different kinetic parameters along with only subtle changes in morphology.


Subject(s)
Lipid Bilayers , Lipopolysaccharides , Humans , Animals , Staphylococcus aureus , Amyloidogenic Proteins , Cell Membrane , Mammals
3.
J Biol Chem ; 297(2): 100953, 2021 08.
Article in English | MEDLINE | ID: mdl-34270957

ABSTRACT

Phenol-soluble modulins (PSMs), such as α-PSMs, ß-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits ß-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than ß-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.


Subject(s)
Peptides , Staphylococcus aureus , Bacterial Toxins , Biofilms/growth & development , Kinetics , Peptides/metabolism , Virulence
4.
Macromol Rapid Commun ; 40(8): e1800898, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30840348

ABSTRACT

Silk fibroin is a natural protein obtained from the Bombyx mori silkworm. In addition to being the key structural component in silkworm cocoons, it also has the propensity to self-assemble in vitro into hierarchical structures with desirable properties such as high levels of mechanical strength and robustness. Furthermore, it is an appealing biopolymer due to its biocompatability, low immunogenicity, and lack of toxicity, making it a prime candidate for biomedical material applications. Here, it is demonstrated that nanofibrils formed by reconstituted silk fibroin can be engineered into supramolecular microgels using a soft lithography-based microfluidic approach. Building on these results, a potential application for these protein microgels to encapsulate and release small molecules in a controlled manner is illustrated. Taken together, these results suggest that the tailored self-assembly of biocompatible and biodegradable silk nanofibrils can be used to generate functional micromaterials for a range of potential applications in the biomedical and pharmaceutical fields.


Subject(s)
Fibroins/chemistry , Silk/chemistry , Animals , Biocompatible Materials/chemistry , Bombyx , Gels/chemistry , Macromolecular Substances/chemistry
5.
Anal Chem ; 89(22): 12306-12313, 2017 11 21.
Article in English | MEDLINE | ID: mdl-28972786

ABSTRACT

The self-replicating properties of proteins into amyloid fibrils is a common phenomenon and underlies a variety of neurodegenerative diseases. Because propagation-active fibrils are chemically indistinguishable from innocuous aggregates and monomeric precursors, their detection requires measurements of their replicative capacity. Here we present a digital amyloid quantitative assay (d-AQuA) with insulin as model protein for the absolute quantification of single replicative units, propagons. D-AQuA is a microfluidics-based technology that performs miniaturized simultaneous propagon-induced amplification chain reactions within hundreds to thousands of picoliter-sized droplets. At limiting dilutions, the d-AQuA reactions follow a stochastic regime indicative of the detection of single propagons. D-AQuA thus enables absolute quantification of single propagons present in a given sample at very low concentrations. The number of propagons quantified by d-AQuA was similar to that of fibrillar insulin aggregates detected by atomic-force microscopy and to an equivalent microplate-based assay, providing independent evidence for the identity of insulin propagons with a subset of morphologically defined protein aggregates. The sensitivity, precision, and accuracy of d-AQuA enable it to be suitable for multiple biotechnological and medical applications.


Subject(s)
Amyloid beta-Peptides/analysis , Microfluidic Analytical Techniques , Humans , Microscopy, Atomic Force , Particle Size , Surface Properties
6.
Biochim Biophys Acta ; 1848(9): 1897-907, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25666871

ABSTRACT

The deposition of amyloid material has been associated with many different diseases. Although these diseases are very diverse the amyloid material share many common features such as cross-ß-sheet structure of the backbone of the proteins deposited. Another common feature of the aggregation process for a wide variety of proteins is the presence of prefibrillar oligomers. These oligomers are linked to the cytotoxicity occurring during the aggregation of proteins. These prefibrillar oligomers interact extensively with lipid membranes and in some cases leads to destabilization of lipid membranes. This interaction is however highly dependent on the nature of both the oligomer and the lipids. Anionic lipids are often required for interaction with the lipid membrane while increased exposure of hydrophobic patches from highly dynamic protein oligomers are structural determinants of cytotoxicity of the oligomers. To explore the oligomer lipid interaction in detail the interaction between oligomers of α-synuclein and the 4th fasciclin-1 domain of TGFBIp with lipid membranes will be examined here. For both proteins the dynamic species are the ones causing membrane destabilization and the membrane interaction is primarily seen when the lipid membranes contain anionic lipids. Hence the dynamic nature of oligomers with exposed hydrophobic patches alongside the presence of anionic lipids could be essential for the cytotoxicity observed for prefibrillar oligomers in general. This article is part of a Special Issue entitled: Lipid-protein interactions.


Subject(s)
Membrane Lipids/chemistry , Membrane Proteins/chemistry , Protein Folding , Protein Multimerization , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Humans , Membrane Lipids/metabolism , Membrane Proteins/metabolism , Models, Molecular , Neurodegenerative Diseases/metabolism , Protein Binding
7.
Biochim Biophys Acta ; 1854(12): 1890-1897, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26284878

ABSTRACT

Applying fibril-forming peptides in nanomaterial design is still challenged by the difficulties in understanding and controlling how fibrils form. The present work investigates the influence of motional restriction on peptide fibrillation. We use cyclotriphosphazene and cyclodextrin as templates to make conjugates of the fibril-forming core of human islet amyloid polypeptide. Attachment of the peptide to the templates resulted in multimers containing six peptide fragments at different positions. ThT fluorescence, CD and FTIR spectroscopy, and AFM and TEM imaging reveal that in both conjugates the peptide retained its fibrillating properties and formed fibrils. However, the conjugate fibrils formed more rapidly than the free peptide and were long and thin, as opposed to the thick and twisted morphology of the intact peptide. Thus the motional restrictions introduced by the scaffold modulate the structure of the fibrils but do not impede the actual fibrillation process.


Subject(s)
Amyloidogenic Proteins/chemistry , Peptide Fragments/chemistry , Microscopy, Electron, Transmission
8.
Proc Natl Acad Sci U S A ; 110(8): 2798-803, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23388629

ABSTRACT

Uncontrolled misfolding of proteins leading to the formation of amyloid deposits is associated with more than 40 types of diseases, such as neurodegenerative diseases and type-2 diabetes. These irreversible amyloid fibrils typically assemble in distinct stages. Transitions among the various intermediate stages are the subject of many studies but are not yet fully elucidated. Here, we combine high-resolution atomic force microscopy and quantitative nanomechanical mapping to determine the self-assembled structures of the decapeptide hIAPP(20-29), which is considered to be the fibrillating core fragment of the human islet amyloid polypeptide (hIAPP) involved in type-2 diabetes. We successfully follow the evolution of hIAPP(20-29) nanostructures over time, calculate the average thickening speed of small ribbon-like structures, and provide evidence of the coexistence of ribbon and helical fibrils, highlighting a key step within the self-assembly model. In addition, the mutations of individual side chains of wide-type hIAPP(20-29) shift this balance and destabilize the helical fibrils sufficiently relative to the twisted ribbons to lead to their complete elimination. We combine atomic force microscopy structures, mechanical properties, and solid-state NMR structural information to build a molecular model containing ß sheets in cross-ß motifs as the basis of self-assembled amyloids.


Subject(s)
Amyloid/chemistry , Microscopy, Atomic Force/methods , Nanotechnology , Peptide Fragments/chemistry , Amyloid/genetics , Humans , Islet Amyloid Polypeptide , Models, Molecular , Mutation , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/genetics , Protein Conformation
9.
Biochemistry ; 53(44): 6968-80, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25334015

ABSTRACT

The formation of aggregated fibrillar ß-sheet structures has been proposed to be a generic feature of proteins. Aggregation propensity is highly sequence dependent, and often only part of the protein is incorporated into the fibril core. Therefore, shorter peptide fragments corresponding to the fibril core are attractive fibrillation models. The use of peptide models introduces new termini into the fibrils, yet little attention has been paid to the role these termini may play in fibrillation. Here, we report that terminal modifications of a 10-residue peptide fragment of human islet amyloid polypeptide strongly affect fibrillation kinetics and the resulting fibril morphology. Capping of the N-terminus abolishes fibrillation, while C-terminal capping results in fibrils with a twisted morphology. Peptides with either both termini free or both termini capped form flat fibrils. Molecular dynamics simulations reveal that the N-terminal acetyl cap folds up and interacts with the peptide's hydrophobic side chains, while the uncapped N-terminus in the C-terminally capped version results in twisting of the fibrils due to charge repulsion from the free N-termini. Our results highlight the role of terminal interactions in fibrillation of small peptides and provide molecular insight into the consequences of C-terminal modifications frequently found in peptide hormones in vivo.


Subject(s)
Amyloid/chemistry , Islet Amyloid Polypeptide/chemistry , Amino Acid Sequence , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Protein Aggregation, Pathological , Protein Processing, Post-Translational , Protein Structure, Secondary
10.
Biochemistry ; 53(39): 6252-63, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25216651

ABSTRACT

Many neurodegenerative diseases are linked with formation of amyloid aggregates. It is increasingly accepted that not the fibrils but rather oligomeric species are responsible for degeneration of neuronal cells. Strong evidence suggests that in Parkinson's disease (PD), cytotoxic α-synuclein (αSN) oligomers are key to pathogenicity. Nevertheless, insight into the oligomers' molecular properties remains scarce. Here we show that αSN oligomers, despite a large amount of disordered structure, are remarkably stable against extreme pH, temperature, and even molar amounts of chemical denaturants, though they undergo cooperative unfolding at higher denaturant concentrations. Mutants found in familial PD lead to slightly larger oligomers whose stabilities are very similar to that of wild-type αSN. Isolated oligomers do not revert to monomers but predominantly form larger aggregates consisting of stacked oligomers, suggesting that they are off-pathway relative to the process of fibril formation. We also demonstrate that 4-(dicyanovinyl)julolidine (DCVJ) can be used as a specific probe for detection of αSN oligomers. The high stability of the αSN oligomer indicates that therapeutic strategies should aim to prevent the formation of or passivate rather than dissociate this cytotoxic species.


Subject(s)
Protein Multimerization , Protein Unfolding , alpha-Synuclein/chemistry , Amyloid/chemistry , Electrophoresis, Polyacrylamide Gel , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Models, Molecular , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Stability , Scattering, Small Angle , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
11.
J Am Chem Soc ; 136(10): 3859-68, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24527756

ABSTRACT

Studies of proteins' formation of amyloid fibrils have revealed that potentially cytotoxic oligomers frequently accumulate during fibril formation. An important question in the context of mechanistic studies of this process is whether or not oligomers are intermediates in the process of amyloid fibril formation, either as precursors of fibrils or as species involved in the fibril elongation process or instead if they are associated with an aggregation process that is distinct from that generating mature fibrils. Here we describe and characterize in detail two well-defined oligomeric species formed by the protein α-synuclein (αSN), whose aggregation is strongly implicated in the development of Parkinson's disease (PD). The two types of oligomers are both formed under conditions where amyloid fibril formation is observed but differ in molecular weight by an order of magnitude. Both possess a degree of ß-sheet structure that is intermediate between that of the disordered monomer and the fully structured amyloid fibrils, and both have the capacity to permeabilize vesicles in vitro. The smaller oligomers, estimated to contain ∼30 monomers, are more numerous under the conditions used here than the larger ones, and small-angle X-ray scattering data suggest that they are ellipsoidal with a high degree of flexibility at the interface with solvent. This oligomer population is unable to elongate fibrils and indeed results in an inhibition of the kinetics of amyloid formation in a concentration-dependent manner.


Subject(s)
Amyloid/chemistry , alpha-Synuclein/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Humans , Kinetics , Parkinson Disease/metabolism , Protein Aggregates , Protein Conformation , Protein Multimerization , Scattering, Small Angle , X-Ray Diffraction , alpha-Synuclein/metabolism , alpha-Synuclein/ultrastructure
12.
FEBS J ; 291(9): 1925-1943, 2024 May.
Article in English | MEDLINE | ID: mdl-38349812

ABSTRACT

Functional bacterial amyloids play a crucial role in the formation of biofilms, which mediate chronic infections and contribute to antimicrobial resistance. This study focuses on the FapC amyloid fibrillar protein from Pseudomonas, a major contributor to biofilm formation. We investigate the initial steps of FapC amyloid formation and the impact of the chaperone-like protein FapA on this process. Using solution nuclear magnetic resonance (NMR), we recently showed that both FapC and FapA are intrinsically disordered proteins (IDPs). Here, the secondary structure propensities (SSPs) are compared to alphafold (DeepMind, protein structure prediction tool/algorithm: https://alphafold.ebi.ac.uk/) models. We further demonstrate that the FapA chaperone interacts with FapC and significantly slows down the formation of FapC fibrils. Our NMR titrations reveal ~ 18% of the resonances show FapA-induced chemical shift perturbations (CSPs), which has not been previously observed, the largest being for A82, N201, C237, C240, A241, and G245. These sites may suggest a specific interaction site and/or hotspots of fibrillation inhibition/control interface at the repeat-1 (R1)/loop-2 (L2) and L2/R3 transition areas and at the C-terminus of FapC. Remarkably, ~ 90% of FapA NMR signals exhibit substantial CSPs upon titration with FapC, the largest being for S63, A69, A80, and I92. A temperature-dependent effect of FapA was observed on FapC by thioflavin T (ThT) and NMR experiments. This study provides a detailed understanding of the interaction between the FapA and FapC, shedding light on the regulation and slowing down of amyloid formation, and has important implications for the development of therapeutic strategies targeting biofilms and associated infections.


Subject(s)
Amyloid , Bacterial Proteins , Biofilms , Molecular Chaperones , Biofilms/drug effects , Biofilms/growth & development , Amyloid/metabolism , Amyloid/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Pseudomonas/metabolism , Protein Structure, Secondary , Nuclear Magnetic Resonance, Biomolecular
13.
J Biol Chem ; 287(41): 34730-42, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22893702

ABSTRACT

Mutations in the transforming growth factor ß-induced protein (TGFBIp) are linked to the development of corneal dystrophies in which abnormal protein deposition in the cornea leads to a loss of corneal transparency and ultimately blindness. Different mutations give rise to phenotypically distinct corneal dystrophies. Most mutations are located in the fourth fasciclin-1 domain (FAS1-4). The amino acid substitution A546T in the FAS1-4 domain is linked to the development of lattice corneal dystrophy with amyloid deposits in the superficial and deep stroma, classifying it as an amyloid disease. Here we provide a detailed description of the fibrillation of the isolated FAS1-4 domain carrying the A546T substitution. The A546T substitution leads to a significant destabilization of FAS1-4 and induces a partially folded structure with increased surface exposure of hydrophobic patches. The mutation also leads to two distinct fibril morphologies. Long straight fibrils composed of pure ß-sheet structure are formed at lower concentrations, whereas short and curly fibrils containing a mixture of α-helical and ß-sheet structures are formed at higher concentrations. The formation of short and curly fibrils is preceded by the formation of a small number of oligomeric species with high membrane permeabilization potential and rapid fibril formation. The long straight fibrils are formed more slowly and through progressively bigger oligomers that lose their membrane permeabilization potential as fibrillation proceeds beyond the lag phase. These different fibril classes and associated biochemical differences may lead to different clinical symptoms associated with the mutation.


Subject(s)
Amyloid/chemistry , Extracellular Matrix Proteins/chemistry , Protein Multimerization , Transforming Growth Factor beta/chemistry , Amino Acid Substitution , Amyloid/genetics , Amyloid/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cornea/metabolism , Cornea/pathology , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/metabolism , Corneal Dystrophies, Hereditary/pathology , Extracellular Matrix Proteins/metabolism , Mutation, Missense , Permeability , Protein Structure, Quaternary , Protein Structure, Secondary , Transforming Growth Factor beta/metabolism
14.
Biochim Biophys Acta ; 1824(2): 274-85, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22064122

ABSTRACT

The well-ordered cross ß-strand structure found in amyloid aggregates is stabilized by many different side chain interactions, including hydrophobic interactions, electrostatic charge and the intrinsic propensity to form ß-sheet structures. In addition to the side chains, backbone interactions are important because of the regular hydrogen-bonding pattern. ß-Sheet breaking peptide analogs, such as those formed by N-methylation, interfere with the repetitive hydrogen bonding pattern of peptide strands. Here we test backbone contributions to fibril stability using analogs of the 6-10 residue fibril core of human islet amyloid polypeptide, a 37 amino acid peptide involved in the pathogenesis of type II diabetes. The Phe-Gly peptide bond has been replaced by a hydroxyethylene or a ketomethylene group and the nitrogen-atom has been methylated. In addition, we have prepared peptoids where the side chain is transferred to the nitrogen atom. The backbone turns out to be extremely sensitive to substitution, since only the minimally perturbed ketomethylene analog (where only one of the -NH- groups has been replaced by -CH(2)-) can elongate wildtype fibrils but cannot fibrillate on its own. The resulting fibrils displayed differences in both secondary structure and overall morphology. No analog could inhibit the fibrillation of the parent peptide, suggesting an inability to bind to existing fibril surfaces. In contrast, side chain mutations that left the backbone intact but increased backbone flexibility or removed stabilizing side-chain interactions had very small effect on fibrillation kinetics. We conclude that fibrillation is very sensitive to even small modifications of the peptide backbone.


Subject(s)
Amyloid/chemistry , Oligopeptides/chemistry , Peptide Fragments/chemistry , Peptoids/chemistry , Amyloid/metabolism , Diabetes Mellitus, Type 2/metabolism , Dipeptides/chemistry , Dipeptides/metabolism , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Methylation , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Oligopeptides/metabolism , Peptide Fragments/metabolism , Peptoids/metabolism , Protein Structure, Secondary , Spectrum Analysis , X-Ray Diffraction
16.
J Biol Chem ; 286(7): 4951-8, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21135107

ABSTRACT

Mutations in the human TGFBI gene encoding TGFBIp have been linked to protein deposits in the cornea leading to visual impairment. The protein consists of an N-terminal Cys-rich EMI domain and four consecutive fasciclin 1 (FAS1) domains. We have compared the stabilities of wild-type (WT) human TGFBIp and six mutants known to produce phenotypically distinct deposits in the cornea. Amino acid substitutions in the first FAS1 (FAS1-1) domain (R124H, R124L, and R124C) did not alter the stability. However, substitutions within the fourth FAS1 (FAS1-4) domain (A546T, R555Q, and R555W) affected the overall stability of intact TGFBIp revealing the following stability ranking R555W>WT>R555Q>A546T. Significantly, the stability ranking of the isolated FAS1-4 domains mirrored the behavior of the intact protein. In addition, it was linked to the aggregation propensity as the least stable mutant (A546T) forms amyloid fibrils while the more stable variants generate non-amyloid amorphous deposits in vivo. Significantly, the data suggested that both an increase and a decrease in the stability of FAS1-4 may unleash a disease mechanism. In contrast, amino acid substitutions in FAS1-1 did not affect the stability of the intact TGFBIp suggesting that molecular the mechanism of disease differs depending on the FAS1 domain carrying the mutation.


Subject(s)
Amino Acid Substitution , Amyloid/metabolism , Cornea/metabolism , Corneal Dystrophies, Hereditary/metabolism , Extracellular Matrix Proteins/metabolism , Mutation, Missense , Transforming Growth Factor beta/metabolism , Amyloid/genetics , Corneal Dystrophies, Hereditary/genetics , Extracellular Matrix Proteins/genetics , HEK293 Cells , Humans , Protein Stability , Protein Structure, Tertiary , Transforming Growth Factor beta/genetics
17.
Chem Sci ; 13(22): 6457-6477, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35756505

ABSTRACT

Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-ß-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.

18.
Sci Adv ; 8(32): eabn6831, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35960802

ABSTRACT

Fibrillar protein aggregates are a hallmark of a range of human disorders, from prion diseases to dementias, but are also encountered in several functional contexts. Yet, the fundamental links between protein assembly mechanisms and their functional or pathological roles have remained elusive. Here, we analyze the aggregation kinetics of a large set of proteins that self-assemble by a nucleated-growth mechanism, from those associated with disease, over those whose aggregates fulfill functional roles in biology, to those that aggregate only under artificial conditions. We find that, essentially, all such systems, regardless of their biological role, are capable of self-replication. However, for aggregates that have evolved to fulfill a structural role, the rate of self-replication is too low to be significant on the biologically relevant time scale. By contrast, all disease-related proteins are able to self-replicate quickly compared to the time scale of the associated disease. Our findings establish the ubiquity of self-replication and point to its potential importance across aggregation-related disorders.

19.
Microorganisms ; 9(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430169

ABSTRACT

The pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently identified phenol-soluble modulin (PSM) peptides act as the key molecular effectors of staphylococcal biofilm maturation and promote the formation of an aggregated fibril structure. The aim of this study was to evaluate the effect of various pH values on the formation of functional amyloids of individual PSM peptides. Here, we combined a range of biophysical, chemical kinetics and microscopic techniques to address the structure and aggregation mechanism of individual PSMs under different conditions. We established that there is a pH-induced switch in PSM aggregation kinetics. Different lag times and growth of fibrils were observed, which indicates that there was no clear correlation between the rates of fibril elongation among different PSMs. This finding confirms that pH can modulate the aggregation properties of these peptides and suggest a deeper understanding of the formation of aggregates, which represents an important basis for strategies to interfere and might help in reducing the risk of biofilm-related infections.

20.
Elife ; 92020 12 01.
Article in English | MEDLINE | ID: mdl-33259287

ABSTRACT

The infective ability of the opportunistic pathogen Staphylococcus aureus, recognized as the most frequent cause of biofilm-associated infections, is associated with biofilm-mediated resistance to host immune response. Phenol-soluble modulins (PSM) comprise the structural scaffold of S. aureus biofilms through self-assembly into functional amyloids, but the role of individual PSMs during biofilm formation remains poorly understood and the molecular pathways of PSM self-assembly are yet to be identified. Here we demonstrate high degree of cooperation between individual PSMs during functional amyloid formation. PSMα3 initiates the aggregation, forming unstable aggregates capable of seeding other PSMs resulting in stable amyloid structures. Using chemical kinetics we dissect the molecular mechanism of aggregation of individual PSMs showing that PSMα1, PSMα3 and PSMß1 display secondary nucleation whereas PSMß2 aggregates through primary nucleation and elongation. Our findings suggest that various PSMs have evolved to ensure fast and efficient biofilm formation through cooperation between individual peptides.


Subject(s)
Amyloidogenic Proteins/metabolism , Bacterial Proteins/metabolism , Biofilms/growth & development , Staphylococcus aureus/metabolism , Virulence Factors/metabolism , Amyloidogenic Proteins/chemistry , Bacterial Proteins/chemistry , Kinetics , Phenol/chemistry , Protein Aggregates , Protein Stability , Protein Structure, Secondary , Solubility , Solvents/chemistry , Staphylococcus aureus/growth & development , Staphylococcus aureus/pathogenicity , Structure-Activity Relationship , Virulence Factors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL