Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Nat Chem Biol ; 17(4): 465-476, 2021 04.
Article in English | MEDLINE | ID: mdl-33542532

ABSTRACT

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.


Subject(s)
Ferroptosis/physiology , Group VI Phospholipases A2/metabolism , Animals , Arachidonate 15-Lipoxygenase/metabolism , Disease Models, Animal , Female , Group VI Phospholipases A2/physiology , Humans , Iron/metabolism , Leukotrienes/metabolism , Lipid Metabolism/physiology , Lipid Peroxides/metabolism , Lipids/physiology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Parkinson Disease/metabolism , Phosphatidylethanolamine Binding Protein/metabolism , Phospholipases/metabolism , Phospholipids/metabolism , Rats , Rats, Inbred Lew
2.
J Cell Physiol ; 237(3): 1753-1767, 2022 03.
Article in English | MEDLINE | ID: mdl-34791648

ABSTRACT

Aging is a physiological process that leads to a higher risk for the most devastating diseases. There are a number of theories of human aging proposed, and many of them are directly or indirectly linked to mitochondria. Here, we used mesenchymal stem cells (MSCs) from young and older donors to study age-related changes in mitochondrial metabolism. We have found that aging in MSCs is associated with a decrease in mitochondrial membrane potential and lower NADH levels in mitochondria. Mitochondrial DNA content is higher in aged MSCs, but the overall mitochondrial mass is decreased due to increased rates of mitophagy. Despite the higher level of ATP in aged cells, a higher rate of ATP consumption renders them more vulnerable to energy deprivation compared to younger cells. Changes in mitochondrial metabolism in aged MSCs activate the overproduction of reactive oxygen species in mitochondria which is compensated by a higher level of the endogenous antioxidant glutathione. Thus, energy metabolism and redox state are the drivers for the aging of MSCs/mesenchymal stromal cells.


Subject(s)
Mesenchymal Stem Cells , Adenosine Triphosphate/metabolism , Aged , Humans , Membrane Potential, Mitochondrial , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
3.
J Transl Med ; 20(1): 562, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471396

ABSTRACT

Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.


Subject(s)
Mitochondrial Diseases , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Genetic Therapy , Inheritance Patterns
4.
Med Res Rev ; 41(2): 770-784, 2021 03.
Article in English | MEDLINE | ID: mdl-32656815

ABSTRACT

The world's population aging progression renders age-related neurodegenerative diseases to be one of the biggest unsolved problems of modern society. Despite the progress in studying the development of pathology, finding ways for modifying neurodegenerative disorders remains a high priority. One common feature of neurodegenerative diseases is mitochondrial dysfunction and overproduction of reactive oxygen species, resulting in oxidative stress. Although lipid peroxidation is one of the markers for oxidative stress, it also plays an important role in cell physiology, including activation of phospholipases and stimulation of signaling cascades. Excessive lipid peroxidation is a hallmark for most neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and many other neurological conditions. The products of lipid peroxidation have been shown to be the trigger for necrotic, apoptotic, and more specifically for oxidative stress-related, that is, ferroptosis and neuronal cell death. Here we discuss the involvement of lipid peroxidation in the mechanism of neuronal loss and some novel therapeutic directions to oppose it.


Subject(s)
Mitochondria , Neurodegenerative Diseases , Humans , Lipid Peroxidation , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
5.
J Cell Physiol ; 236(9): 6496-6506, 2021 09.
Article in English | MEDLINE | ID: mdl-33570767

ABSTRACT

The receptor for advanced glycation end products (RAGE) is a signal receptor first shown to be activated by advanced glycation end products, but also by a variety of signal molecules, including pathological advanced oxidation protein products and ß-amyloid. However, most of the RAGE activators have multiple intracellular targets, making it difficult to unravel the exact pathway of RAGE activation. Here, we show that the cell-impermeable RAGE fragment sequence (60-76) of the V-domain of the receptor is able to activate RAGE present on the plasma membrane of neurons and, preferentially, astrocytes. This leads to the exocytosis of vesicular glutamate transporter vesicles and the release of glutamate from astrocytes, which stimulate NMDA and AMPA/kainate receptors, resulting in calcium signals predominantly in neurons. Thus, we show a specific mechanism of RAGE activation by the RAGE fragment and propose a mechanism by which RAGE activation can contribute to the neuronal-astrocytic communication in physiology and pathology.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Glutamic Acid/metabolism , Neurons/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Astrocytes/drug effects , Calcium/metabolism , Calcium Signaling/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Extracellular Space/metabolism , Humans , Neurons/drug effects , Peptides/pharmacology , Protein Domains , Rabbits , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products/chemistry , Receptors, AMPA/metabolism , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
6.
J Neurochem ; 157(4): 1234-1243, 2021 05.
Article in English | MEDLINE | ID: mdl-33190229

ABSTRACT

Brain is not homogenous and neurons from various brain regions are known to have different vulnerabilities to mitochondrial mutations and mitochondrial toxins. However, it is not clear if this vulnerability is connected to different energy metabolism in specific brain regions. Here, using live-cell imaging, we compared mitochondrial membrane potential and nicotinamide adenine dinucleotide (NADH) redox balance in acute rat brain slices in different brain regions and further detailed the mitochondrial metabolism in primary neurons and astrocytes from rat cortex, midbrain and cerebellum. We have found that mitochondrial membrane potential is higher in brain slices from the hippocampus and brain stem. In primary co-cultures, mitochondrial membrane potential in astrocytes was lower than in neurons, whereas in midbrain cells it was higher than in cortex and cerebellum. The rate of NADH production and mitochondrial NADH pool were highest in acute slices from midbrain and midbrain primary neurons and astrocytes. Although the level of adenosine tri phosphate (ATP) was similar among primary neurons and astrocytes from cortex, midbrain and cerebellum, the rate of ATP consumption was highest in midbrain cells that lead to faster neuronal and astrocytic collapse in response to inhibitors of ATP production. Thus, midbrain neurons and astrocytes have a higher metabolic rate and ATP consumption that makes them more vulnerable to energy deprivation.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Energy Metabolism/physiology , Mitochondria/physiology , Neurons/metabolism , Animals , Male , Membrane Potential, Mitochondrial/physiology , Organ Culture Techniques , Rats , Rats, Wistar
7.
Biochem J ; 477(8): 1515-1524, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32270854

ABSTRACT

Inorganic polyphosphate (polyP) is a polymer present in all living organisms. Although polyP is found to be involved in a variety of functions in cells of higher organisms, the enzyme responsible for polyP production and consumption has not yet been identified. Here, we studied the effect of polyP on mitochondrial respiration, oxidative phosphorylation and activity of F0F1-ATPsynthase. We have found that polyP activates mitochondrial respiration which does not coupled with ATP production (V2) but inhibits ADP-dependent respiration (V3). Moreover, PolyP can stimulate F0F1-ATPase activity in the presence of ATP and, importantly, can be hydrolyzed in this enzyme instead of ATP. Furthermore, PolyP can be produced in mitochondria in the presence of substrates for respiration and phosphate by the F0F1-ATPsynthase. Thus, polyP is an energy molecule in mammalian cells which can be produced and hydrolyzed in the mitochondrial F0F1-ATPsynthase.


Subject(s)
Mitochondria/enzymology , Polyphosphates/metabolism , Proton-Translocating ATPases/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Hydrolysis , Mammals/genetics , Mammals/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Phosphorylation , Rats , Rats, Sprague-Dawley
8.
J Neurosci ; 39(31): 6038-6048, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31147524

ABSTRACT

Glutamate is one of the most important neurotransmitters in the process of signal transduction in the CNS. Excessive amounts of this neurotransmitter lead to glutamate excitotoxicity, which is accountable for neuronal death in acute neurological disorders, including stroke and trauma, and in neurodegenerative diseases. Inorganic polyphosphate (PolyP) plays multiple roles in the mammalian brain, including function as a calcium-dependent gliotransmitter mediating communication between astrocytes, while its role in the regulation of neuronal activity is unknown. Here we studied the effect of PolyP on glutamate-induced calcium signal in primary rat neurons in both physiological and pathological conditions. We found that preincubation of primary neurons with PolyP reduced glutamate-induced and AMPA-induced but not the NMDA-induced calcium signal. However, in rat hippocampal acute slices, PolyP reduced ion flux through NMDA and AMPA receptors in native neurons. The effect of PolyP on glutamate and specifically on the AMPA receptors was dependent on the presence of P2Y1 but not of P2X receptor inhibitors and also could be mimicked by P2Y1 agonist 2MeSADP. Preincubation of cortical neurons with PolyP significantly reduced the initial calcium peak as well as the number of neurons with delayed calcium deregulation in response to high concentrations of glutamate and resulted in protection of neurons against glutamate-induced cell death. As a result, activation of P2Y1 receptors by PolyP reduced calcium signal acting through AMPA receptors, thus protecting neurons against glutamate excitotoxicity by reduction of the calcium overload and restoration of mitochondrial function.SIGNIFICANCE STATEMENT One of the oldest polymers in the evolution of living matter is the inorganic polyphosphate (PolyP). It is shown to play a role of gliotransmitter in the brain; however, the role of polyphosphate in neuronal signaling is not clear. Here we demonstrate that inorganic polyphosphate is able to reduce calcium signaling induced by physiological or high concentrations of glutamate. The effect of polyphosphate on glutamate-induced calcium signal in neurons is due to the effect of this polymer on the AMPA receptors. The effect of PolyP on glutamate-induced and AMPA-induced calcium signal is dependent on P2Y receptor antagonist. The ability of PolyP to restrict the glutamate-induced calcium signal lies in the basis of its protection of neurons against glutamate excitotoxicity.


Subject(s)
Glutamic Acid/metabolism , Neurons/metabolism , Polyphosphates/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Purinergic P2Y1/metabolism , Animals , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cells, Cultured , Female , Glutamic Acid/toxicity , Male , Neurons/drug effects , Polyphosphates/pharmacology , Rats , Rats, Sprague-Dawley
9.
Biochem Soc Trans ; 47(6): 1963-1969, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31769488

ABSTRACT

Mitochondria control vitally important functions in cells, including energy production, cell signalling and regulation of cell death. Considering this, any alteration in mitochondrial metabolism would lead to cellular dysfunction and the development of a disease. A large proportion of disorders associated with mitochondria are induced by mutations or chemical inhibition of the mitochondrial complex I - the entry point to the electron transport chain. Subunits of the enzyme NADH: ubiquinone oxidoreductase, are encoded by both nuclear and mitochondrial DNA and mutations in these genes lead to cardio and muscular pathologies and diseases of the central nervous system. Despite such a clear involvement of complex I deficiency in numerous disorders, the molecular and cellular mechanisms leading to the development of pathology are not very clear. In this review, we summarise how lack of activity of complex I could differentially change mitochondrial and cellular functions and how these changes could lead to a pathology, following discrete routes.


Subject(s)
Electron Transport Complex I/metabolism , Adenosine Triphosphate/metabolism , Calcium/metabolism , Electron Transport Complex I/genetics , Energy Metabolism , Humans , Mitochondria/metabolism , Mutation , Parkinson Disease/metabolism , Reactive Oxygen Species/metabolism
10.
Glia ; 66(10): 2126-2136, 2018 10.
Article in English | MEDLINE | ID: mdl-30260496

ABSTRACT

Inorganic polyphosphate (polyP) is present in every cell and is highly conserved from primeval times. In the mammalian cells, polyP plays multiple roles including control of cell bioenergetics and signal transduction. In the brain, polyP mediates signaling between astrocytes via activation of purinergic receptors, however, the mechanisms of polyP release remain unknown. Here we report identification of polyP-containing vesicles in cortical astrocytes and the main triggers that evoke vesicular polyP release. In cultured astrocytes, polyP was localized predominantly within the intracellular vesicular compartments which express vesicular nucleotide transporter VNUT (putative ATP-containing vesicles), but not within the compartments expressing vesicular glutamate transporter 2 (VGLUT2). The number of lysosomes which contain polyP was dependent on the conditions of astrocytes. Release of polyP from a proportion of lysosomes could be induced by calcium ionophores. In contrast, polyP release from the VNUT-containing vesicles could be triggered by various physiological stimuli, such as pH changes, polyP induced polyP release and other stimuli which increase [Ca2+ ] i . These data suggest that astrocytes release polyP predominantly via exocytosis from the VNUT-containing vesicles. © 2018 Wiley Periodicals, Inc.


Subject(s)
Astrocytes/metabolism , Lysosomes/metabolism , Polyphosphates/metabolism , Adenosine Triphosphate/metabolism , Animals , Astrocytes/cytology , Calcium/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , Exocytosis/physiology , Hydrogen-Ion Concentration , Intracellular Space/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/deficiency , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Rats, Sprague-Dawley , Signal Transduction , Vesicular Glutamate Transport Protein 2/metabolism
11.
Am J Hum Genet ; 96(4): 657-65, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25799108

ABSTRACT

Reports of primary isolated dystonia inherited in an autosomal-recessive (AR) manner, often lumped together as "DYT2 dystonia," have appeared in the scientific literature for several decades, but no genetic cause has been identified to date. Using a combination of homozygosity mapping and whole-exome sequencing in a consanguineous kindred affected by AR isolated dystonia, we identified homozygous mutations in HPCA, a gene encoding a neuronal calcium sensor protein found almost exclusively in the brain and at particularly high levels in the striatum, as the cause of disease in this family. Subsequently, compound-heterozygous mutations in HPCA were also identified in a second independent kindred affected by AR isolated dystonia. Functional studies suggest that hippocalcin might play a role in regulating voltage-dependent calcium channels. The identification of mutations in HPCA as a cause of AR primary isolated dystonia paves the way for further studies to assess whether "DYT2 dystonia" is a genetically homogeneous condition or not.


Subject(s)
Dystonia/genetics , Genes, Recessive/genetics , Hippocalcin/genetics , Mutation/genetics , Brain/metabolism , Calcium Channels/metabolism , Hippocalcin/metabolism , Homozygote , Humans , Pedigree
12.
J Cell Sci ; 129(9): 1792-801, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26989132

ABSTRACT

Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca(2+) signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca(2+) in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca(2+) signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca(2+), which prevented the α-synuclein-induced Ca(2+) dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca(2+) signalling in a structure-specific manner and the oligomeric ß-sheet-rich α-synuclein species ultimately leads to Ca(2+) dysregulation and Ca(2+)-dependent cell death.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Calcium/metabolism , Mutation, Missense , Neurons/metabolism , Parkinson Disease/metabolism , Protein Folding , alpha-Synuclein/metabolism , Amino Acid Substitution , Animals , Astrocytes/pathology , Cell Death , Cells, Cultured , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Protein Multimerization/genetics , Rats , Rats, Sprague-Dawley , alpha-Synuclein/genetics
14.
J Neurosci ; 36(41): 10510-10521, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27733604

ABSTRACT

Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, ß-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, ß-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT: Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, ß-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance ATP synthase efficiency under physiological conditions may be of importance when α-synuclein undergoes the misfolding and aggregation reported in PD.


Subject(s)
Brain/enzymology , Mitochondrial Proton-Translocating ATPases/metabolism , alpha-Synuclein/physiology , Adenosine Triphosphate/metabolism , Animals , Astrocytes/enzymology , Astrocytes/metabolism , Cells, Cultured , Energy Metabolism/genetics , Energy Metabolism/physiology , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , NAD/metabolism , Oxygen Consumption/physiology , Unfolded Protein Response/genetics , alpha-Synuclein/genetics
15.
Biochem Biophys Res Commun ; 483(4): 1110-1115, 2017 02 19.
Article in English | MEDLINE | ID: mdl-27470584

ABSTRACT

Two of the most devastating neurodegenerative diseases are consequences out of misfolding and aggregation of key proteins-alpha synuclein and beta-amyloid. Although the primary targets for the two proteins are different, they both share a common mechanism that involves formation of pore-like structure on the plasma membrane, consequent dysregulation of calcium homeostasis, mitochondrial dysfunction and oxidative damage. The combined effect of all this factors ultimately leads to neuronal cell death. Whereas beta amyloid acts on the astrocytic plasma membrane, exhibiting a tight dependence to the membrane cholesterol content, alpha-synuclein does not distinguish between type of membrane or cell. Additionally, oligomeric forms of both proteins produce reactive oxygen species through different mechanisms: beta-amyloid through activation of the NADPH oxidase and alpha-synuclein through non-enzymatic way. Finally, both peptides in oligomeric form induce mitochondrial depolarisation through calcium overload and free radical production that ultimately lead to opening of the mitochondrial permeability transition pore and trigger cell death.


Subject(s)
Amyloid beta-Peptides/metabolism , Calcium/metabolism , Mitochondria/metabolism , alpha-Synuclein/metabolism , Free Radicals/metabolism , Humans
16.
J Neurosci ; 35(29): 10460-73, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26203141

ABSTRACT

In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to detect decreases in oxygen availability leading to slow-timescale, adaptive changes in gene expression and cell physiology. To date, only two types of mammalian cells have been demonstrated to be specialized for rapid functional oxygen sensing: glomus cells of the carotid body (peripheral respiratory chemoreceptors) that stimulate breathing when oxygenation of the arterial blood decreases; and pulmonary arterial smooth muscle cells responsible for hypoxic pulmonary vasoconstriction to limit perfusion of poorly ventilated regions of the lungs. Results of the present study suggest that there is another specialized oxygen-sensitive cell type in the body, the astrocyte, that is tuned for rapid detection of physiological changes in brain oxygenation.


Subject(s)
Astrocytes/metabolism , Chemoreceptor Cells/metabolism , Oxygen/metabolism , Respiratory Physiological Phenomena , Animals , Cell Hypoxia/physiology , Cells, Cultured , Immunohistochemistry , Male , Mice , Mice, Knockout , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
17.
J Neurosci ; 35(13): 5284-92, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25834053

ABSTRACT

The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature.


Subject(s)
Adenosine Triphosphate/metabolism , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging , Signal Transduction , Somatosensory Cortex/physiology , Acid Phosphatase , Adenosine Triphosphate/antagonists & inhibitors , Animals , Cerebrovascular Circulation/drug effects , Electric Stimulation , Forelimb/physiology , Functional Neuroimaging , Male , Microinjections , Protein Tyrosine Phosphatases/administration & dosage , Protein Tyrosine Phosphatases/genetics , Purinergic P1 Receptor Antagonists/pharmacology , Rats , Signal Transduction/drug effects , Somatosensory Cortex/blood supply , Somatosensory Cortex/drug effects , Somatosensory Cortex/metabolism
18.
Biochim Biophys Acta ; 1850(4): 794-801, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25484314

ABSTRACT

BACKGROUND: Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain. METHODS: Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD). RESULTS: We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1-Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production. CONCLUSIONS: These observations suggest that the Keap1-Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase. GENERAL SIGNIFICANCE: Findings supports a key role of the Keap1-Nrf2 pathway in redox homeostasis within the cell.


Subject(s)
Mitochondria/metabolism , NADPH Oxidases/physiology , NF-E2-Related Factor 2/physiology , Reactive Oxygen Species/metabolism , Animals , Cytosol/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Kelch-Like ECH-Associated Protein 1 , Mice , Mice, Hairless
19.
Biochem Soc Trans ; 44(1): 40-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26862186

ABSTRACT

Inorganic polyphosphate (polyP) is a polymer compromised of linearly arranged orthophosphate units that are linked through high-energy phosphoanhydride bonds. The chain length of this polymer varies from five to several thousand orthophosphates. PolyP is distributed in the most of the living organisms and plays multiple functions in mammalian cells, it is important for blood coagulation, cancer, calcium precipitation, immune response and many others. Essential role of polyP is shown for mitochondria, from implication into energy metabolism and mitochondrial calcium handling to activation of permeability transition pore (PTP) and cell death. PolyP is a gliotransmitter which transmits the signal in astrocytes via activation of P2Y1 receptors and stimulation of phospholipase C. PolyP-induced calcium signal in astrocytes can be stimulated by different lengths of this polymer but only long chain polyP induces mitochondrial depolarization by inhibition of respiration and opening of the PTP. It leads to induction of astrocytic cell death which can be prevented by inhibition of PTP with cyclosporine A. Thus, medium- and short-length polyP plays role in signal transduction and mitochondrial metabolism of astrocytes and long chain of this polymer can be toxic for the cells.


Subject(s)
Mitochondria/metabolism , Polyphosphates/pharmacology , Signal Transduction/drug effects , Animals , Cell Death/drug effects , Humans , Mitochondria/drug effects , Neurotransmitter Agents/metabolism
20.
Brain ; 138(Pt 7): 1801-16, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26001724

ABSTRACT

The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane abnormalities. Furthermore we show that the iPLA2-VIA knockout fly model provides a useful platform for the further study of PLA2G6-associated neurodegeneration.


Subject(s)
Drosophila Proteins/genetics , Group VI Phospholipases A2/genetics , Group X Phospholipases A2/genetics , Lipid Peroxidation/genetics , Mitochondria/metabolism , Oxidative Stress/genetics , Animals , Cell Line , Drosophila Proteins/metabolism , Drosophila melanogaster , Fibroblasts/metabolism , Gene Knockout Techniques , Group VI Phospholipases A2/metabolism , Group X Phospholipases A2/metabolism , Humans , Mass Spectrometry , Membrane Potential, Mitochondrial/genetics , Microscopy, Fluorescence , Mitochondria/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL