Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell ; 182(5): 1125-1139.e18, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32822574

ABSTRACT

Maternal decidual NK (dNK) cells promote placentation, but how they protect against placental infection while maintaining fetal tolerance is unclear. Here we show that human dNK cells highly express the antimicrobial peptide granulysin (GNLY) and selectively transfer it via nanotubes to extravillous trophoblasts to kill intracellular Listeria monocytogenes (Lm) without killing the trophoblast. Transfer of GNLY, but not other cell death-inducing cytotoxic granule proteins, strongly inhibits Lm in human placental cultures and in mouse and human trophoblast cell lines. Placental and fetal Lm loads are lower and pregnancy success is greatly improved in pregnant Lm-infected GNLY-transgenic mice than in wild-type mice that lack GNLY. This immune defense is not restricted to pregnancy; peripheral NK (pNK) cells also transfer GNLY to kill bacteria in macrophages and dendritic cells without killing the host cell. Nanotube transfer of GNLY allows dNK to protect against infection while leaving the maternal-fetal barrier intact.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , Bacteria/immunology , Cell Movement/immunology , Killer Cells, Natural/immunology , Trophoblasts/immunology , Animals , Cell Line , Cell Line, Tumor , Dendritic Cells/immunology , Female , HeLa Cells , Humans , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Placenta/immunology , Placenta/microbiology , Pregnancy , Rats , THP-1 Cells , Trophoblasts/microbiology
2.
Nature ; 579(7799): 415-420, 2020 03.
Article in English | MEDLINE | ID: mdl-32188940

ABSTRACT

Cleavage of the gasdermin proteins to produce pore-forming amino-terminal fragments causes inflammatory cell death (pyroptosis)1. Gasdermin E (GSDME, also known as DFNA5)-mutated in familial ageing-related hearing loss2-can be cleaved by caspase 3, thereby converting noninflammatory apoptosis to pyroptosis in GSDME-expressing cells3-5. GSDME expression is suppressed in many cancers, and reduced GSDME levels are associated with decreased survival as a result of breast cancer2,6, suggesting that GSDME might be a tumour suppressor. Here we show that 20 of 22 tested cancer-associated GSDME mutations reduce GSDME function. In mice, knocking out Gsdme in GSDME-expressing tumours enhances, whereas ectopic expression in Gsdme-repressed tumours inhibits, tumour growth. This tumour suppression is mediated by killer cytotoxic lymphocytes: it is abrogated in perforin-deficient mice or mice depleted of killer lymphocytes. GSDME expression enhances the phagocytosis of tumour cells by tumour-associated macrophages, as well as the number and functions of tumour-infiltrating natural-killer and CD8+ T lymphocytes. Killer-cell granzyme B also activates caspase-independent pyroptosis in target cells by directly cleaving GSDME at the same site as caspase 3. Uncleavable or pore-defective GSDME proteins are not tumour suppressive. Thus, tumour GSDME acts as a tumour suppressor by activating pyroptosis, enhancing anti-tumour immunity.


Subject(s)
Neoplasms/immunology , Neoplasms/pathology , Receptors, Estrogen/metabolism , Animals , Apoptosis , Aspartic Acid/metabolism , Cell Line, Tumor , Female , Granzymes/metabolism , Humans , Loss of Function Mutation , Mice , Neoplasms/genetics , Pyroptosis , Receptors, Estrogen/chemistry , Receptors, Estrogen/genetics , T-Lymphocytes, Cytotoxic/immunology
3.
Nat Med ; 22(2): 210-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26752517

ABSTRACT

Protozoan infections are a serious global health problem. Natural killer (NK) cells and cytolytic T lymphocytes (CTLs) eliminate pathogen-infected cells by releasing cytolytic granule contents--granzyme (Gzm) proteases and the pore-forming perforin (PFN)--into the infected cell. However, these cytotoxic molecules do not kill intracellular parasites. CD8(+) CTLs protect against parasite infections in mice primarily by secreting interferon (IFN)-γ. However, human, but not rodent, cytotoxic granules contain the antimicrobial peptide granulysin (GNLY), which selectively destroys cholesterol-poor microbial membranes, and GNLY, PFN and Gzms rapidly kill intracellular bacteria. Here we show that GNLY delivers Gzms into three protozoan parasites (Trypanosoma cruzi, Toxoplasma gondii and Leishmania major), in which the Gzms generate superoxide and inactivate oxidative defense enzymes to kill the parasite. PFN delivers GNLY and Gzms into infected cells, and GNLY then delivers Gzms to the intracellular parasites. Killer cell-mediated parasite death, which we term 'microbe-programmed cell death' or 'microptosis', is caspase independent but resembles mammalian apoptosis, causing mitochondrial swelling, transmembrane potential dissipation, membrane blebbing, phosphatidylserine exposure, DNA damage and chromatin condensation. GNLY-transgenic mice are protected against infection by T. cruzi and T. gondii, and survive infections that are lethal to wild-type mice. Thus, GNLY-, PFN- and Gzm-mediated elimination of intracellular protozoan parasites is an unappreciated immune defense mechanism.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , Granzymes/immunology , Killer Cells, Natural/immunology , Leishmania major , Perforin/immunology , T-Lymphocytes, Cytotoxic/immunology , Toxoplasma , Trypanosoma cruzi , Animals , Antigens, Differentiation, T-Lymphocyte/genetics , Chagas Disease/immunology , Humans , Leishmaniasis, Cutaneous/immunology , Mice , Mice, Transgenic , Toxoplasmosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL