Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Reprod Fertil Dev ; 29(11): 2245-2254, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28384430

ABSTRACT

Bisphenol A (BPA) is considered a potent endocrine disruptor, causing changes in the endocrine system due to its oestrogenic activity. Male individuals may be susceptible to endocrine, morphological and physiological alterations during testicular postnatal development. The aim of the present study was to evaluate whether exposure to BPA during the peripubertal period can damage testicular development. To this end, male Wistar rats were treated with BPA via gavage at doses of 20 or 200µgkg-1 on Postnatal Days (PND) 36-66. The control group was treated with Oil+DMSO under the same conditions. On PND 67, rats were killed. The blood was collected for hormonal analysis, the testis for sperm count, oxidative stress, histopathological and immunohistochemical analyses for ki-67 and sperm of the vas deferens for morphological analysis. Both doses of BPA resulted in abnormal sperm morphology and seminiferous tubules, with the highest dose increasing the height of the germinal epithelium and reducing the number of spermatozoa at Stages IX-XIII of spermatogenesis. In conclusion, both doses of BPA administered during the peripubertal period impaired testicular development without any effects on hormone levels (luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone levels) or oxidative stress.


Subject(s)
Benzhydryl Compounds/pharmacology , Oxidative Stress/drug effects , Phenols/pharmacology , Spermatozoa/drug effects , Testis/drug effects , Animals , Cell Shape/drug effects , Follicle Stimulating Hormone/blood , Luteinizing Hormone/blood , Male , Rats , Rats, Wistar , Sperm Count , Sperm Motility/drug effects , Spermatogenesis/drug effects , Spermatozoa/cytology , Testis/growth & development , Testosterone/blood
2.
Toxicology ; 330: 1-8, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25637669

ABSTRACT

Chronic consumption of ethanol causes morphological and physiological changes in the reproductive system of mammals. Vitamin C has an antioxidant role in organisms by neutralizing the ROS (reactive oxygen species) produced by oxidizing agents and this vitamin has an important function in the male reproductive system. The aim of this study was to evaluate whether vitamin C could prevent or attenuate the alterations in the male reproductive system caused by ethanol consumption. To test this hypothesis, male rats were divided into three experimental groups and treated by gavage for 63 days. The ethanol (E) and ethanol+vitamin C (EC) groups received 2 g/kg of ethanol (25%v/v) daily. In addition to ethanol, the EC group received vitamin C at a dose of 100 mg/day, diluted in water. The control group (C) received only the vehicle. On the 64th experimental day, the animals were anesthetized and euthanized, and blood was collected for plasmatic hormonal analysis. The testis, epididymis, vas deferens, and seminal vesicles were removed and weighed. Sperm from the vas deferens was submitted to morphological and motility analysis. The testis and epididymis were used for oxidative stress and histopathological analysis, sperm count, morphometric analysis of the testis, and stereological analysis of the epididymis. The results showed that vitamin C has a protective effect in the testes of adult male rats, entirely normalizing the parameters of sperm count, spermatogenesis kinetics, lipid peroxidation levels, and sperm motility, as well as partially normalizing the histopathological damage in the testis, epididymis, and sperm morphology. Thus, we concluded that lipid peroxidation is a major mechanism by which ethanol affects the testes and sperm, whereas no plasmatic testosterone alterations were found.


Subject(s)
Ethanol/toxicity , Lipid Peroxidation/drug effects , Spermatozoa/drug effects , Testis/drug effects , Testosterone/blood , Animals , Lipid Peroxidation/physiology , Male , Organ Size , Random Allocation , Rats , Rats, Wistar , Sperm Count/methods , Sperm Motility/drug effects , Sperm Motility/physiology , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/metabolism , Testis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL