ABSTRACT
The inclusive electron neutrino charged-current cross section is measured in the NOvA near detector using 8.02×10^{20} protons-on-target in the NuMI beam. The sample of GeV electron neutrino interactions is the largest analyzed to date and is limited by ≃17% systematic rather than the ≃7.4% statistical uncertainties. The double-differential cross section in final-state electron energy and angle is presented for the first time, together with the single-differential dependence on Q^{2} (squared four-momentum transfer) and energy, in the range 1 GeV≤E_{ν}<6 GeV. Detailed comparisons are made to the predictions of the GENIE, GiBUU, NEUT, and NuWro neutrino event generators. The data do not strongly favor a model over the others consistently across all three cross sections measured, though some models have especially good or poor agreement in the single differential cross section vs Q^{2}.
ABSTRACT
The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a_{1}(1420), decaying to f_{0}(980)π. With a mass too close to and a width smaller than the axial-vector ground state a_{1}(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a_{1}(1260) resonance into K^{*}(âKπ)K[over ¯] and subsequent rescattering through a triangle singularity into the coupled f_{0}(980)π channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the light-meson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.
ABSTRACT
This Letter reports results from the first long-baseline search for sterile antineutrinos mixing in an accelerator-based antineutrino-dominated beam. The rate of neutral-current interactions in the two NOvA detectors, at distances of 1 and 810 km from the beam source, is analyzed using an exposure of 12.51×10^{20} protons-on-target from the NuMI beam at Fermilab running in antineutrino mode. A total of 121 of neutral-current candidates are observed at the far detector, compared to a prediction of 122±11(stat.)±15(syst.) assuming mixing only between three active flavors. No evidence for ν[over ¯]_{µ}âν[over ¯]_{s} oscillation is observed. Interpreting this result within a 3+1 model, constraints are placed on the mixing angles θ_{24}<25° and θ_{34}<32° at the 90% C.L. for 0.05 eV^{2}≤Δm_{41}^{2}≤0.5 eV^{2}, the range of mass splittings that produces no significant oscillations at the near detector. These are the first 3+1 confidence limits set using long-baseline accelerator antineutrinos.
ABSTRACT
The NOvA experiment has seen a 4.4σ signal of ν[over ¯]_{e} appearance in a 2 GeV ν[over ¯]_{µ} beam at a distance of 810 km. Using 12.33×10^{20} protons on target delivered to the Fermilab NuMI neutrino beamline, the experiment recorded 27 ν[over ¯]_{µ}âν[over ¯]_{e} candidates with a background of 10.3 and 102 ν[over ¯]_{µ}âν[over ¯]_{µ} candidates. This new antineutrino data are combined with neutrino data to measure the parameters |Δm_{32}^{2}|=2.48_{-0.06}^{+0.11}×10^{-3} eV^{2}/c^{4} and sin^{2}θ_{23} in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass hierarchy. The data exclude most values near δ_{CP}=π/2 for the inverted mass hierarchy by more than 3σ and favor the normal neutrino mass hierarchy by 1.9σ and θ_{23} values in the upper octant by 1.6σ.
ABSTRACT
Results are reported from an improved measurement of ν_{µ}âν_{e} transitions by the NOvA experiment. Using an exposure equivalent to 6.05×10^{20} protons on target, 33 ν_{e} candidates are observed with a background of 8.2±0.8 (syst.). Combined with the latest NOvA ν_{µ} disappearance data and external constraints from reactor experiments on sin^{2}2θ_{13}, the hypothesis of inverted mass hierarchy with θ_{23} in the lower octant is disfavored at greater than 93% C.L. for all values of δ_{CP}.
ABSTRACT
This Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of 6.05×10^{20} protons on target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the muon-tau symmetry hypothesis that requires maximal θ_{23} mixing (θ_{23}=π/4). Assuming the normal mass hierarchy, we find Δm_{32}^{2}=(2.67±0.11)×10^{-3} eV^{2} and sin^{2}θ_{23} at the two statistically degenerate values 0.404_{-0.022}^{+0.030} and 0.624_{-0.030}^{+0.022}, both at the 68% confidence level. Our data disfavor the maximal mixing scenario with 2.6σ significance.
ABSTRACT
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/c π^{-} beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/c^{2} and 8.5 GeV/c^{2}. Within the experimental uncertainties, the observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of quantum chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. A recent COMPASS SIDIS measurement was obtained at a hard scale comparable to that of these DY results. This opens the way for possible tests of fundamental QCD universality predictions.
ABSTRACT
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 × 6 × 6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.
ABSTRACT
Protegentin is a formulation in the form of an ointment for local application. Its high efficacy was demonstrated in the treatment of wounds in the 1st phase of the process, extended decubitus, trophic ulcers, wounds of various genesis not healing for prolonged periods, urogenital infections, abscesses, maxillofacial phlegmon and abscessing parodontosis. The ointment showed good draining, proteolytic and bactericidal effects. The tolerance was good. The positive results were observed in 97 per cent of the cases.