ABSTRACT
BACKGROUND: Twenty-five percent of rectal adenocarcinoma patients achieve pathologic complete response (pCR) to neoadjuvant chemoradiation and could avoid proctectomy. However, pretreatment clinical or imaging markers are lacking in predicting response to chemoradiation. Radiomic texture features from MRI have recently been associated with therapeutic response in other cancers. PURPOSE: To construct a radiomics texture model based on pretreatment MRI for identifying patients who will achieve pCR to neoadjuvant chemoradiation in rectal cancer, including validation across multiple scanners and sites. STUDY TYPE: Retrospective. SUBJECTS: In all, 104 rectal cancer patients staged with MRI prior to long-course chemoradiation followed by proctectomy; curated from three institutions. FIELD STRENGTH/SEQUENCE: 1.5T-3.0T, axial higher resolution T2 -weighted turbo spin echo sequence. ASSESSMENT: Pathologic response was graded on postsurgical specimens. In total, 764 radiomic features were extracted from single-slice sections of rectal tumors on processed pretreatment T2 -weighted MRI. STATISTICAL TESTS: Three feature selection schemes were compared for identifying radiomic texture descriptors associated with pCR via a discovery cohort (one site, N = 60, cross-validation). The top-selected radiomic texture features were used to train and validate a random forest classifier model for pretreatment identification of pCR (two external sites, N = 44). Model performance was evaluated via area under the curve (AUC), accuracy, sensitivity, and specificity. RESULTS: Laws kernel responses and gradient organization features were most associated with pCR (P ≤ 0.01); as well as being commonly identified across all feature selection schemes. The radiomics model yielded a discovery AUC of 0.699 ± 0.076 and a hold-out validation AUC of 0.712 with 70.5% accuracy (70.0% sensitivity, 70.6% specificity) in identifying pCR. Radiomic texture features were resilient to variations in magnetic field strength as well as being consistent between two different expert annotations. Univariate analysis revealed no significant associations of baseline clinicopathologic or MRI findings with pCR (P = 0.07-0.96). DATA CONCLUSION: Radiomic texture features from pretreatment MRIs may enable early identification of potential pCR to neoadjuvant chemoradiation, as well as generalize across sites. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.
Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Chemoradiotherapy , Humans , Magnetic Resonance Imaging , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Retrospective StudiesABSTRACT
Introduction: For locally advanced rectal cancers, in vivo radiological evaluation of tumor extent and regression after neoadjuvant therapy involves implicit visual identification of rectal structures on magnetic resonance imaging (MRI). Additionally, newer image-based, computational approaches (e.g., radiomics) require more detailed and precise annotations of regions such as the outer rectal wall, lumen, and perirectal fat. Manual annotations of these regions, however, are highly laborious and time-consuming as well as subject to inter-reader variability due to tissue boundaries being obscured by treatment-related changes (e.g., fibrosis, edema). Methods: This study presents the application of U-Net deep learning models that have been uniquely developed with region-specific context to automatically segment each of the outer rectal wall, lumen, and perirectal fat regions on post-treatment, T2-weighted MRI scans. Results: In multi-institutional evaluation, region-specific U-Nets (wall Dice = 0.920, lumen Dice = 0.895) were found to perform comparably to multiple readers (wall inter-reader Dice = 0.946, lumen inter-reader Dice = 0.873). Additionally, when compared to a multi-class U-Net, region-specific U-Nets yielded an average 20% improvement in Dice scores for segmenting each of the wall, lumen, and fat; even when tested on T2-weighted MRI scans that exhibited poorer image quality, or from a different plane, or were accrued from an external institution. Discussion: Developing deep learning segmentation models with region-specific context may thus enable highly accurate, detailed annotations for multiple rectal structures on post-chemoradiation T2-weighted MRI scans, which is critical for improving evaluation of tumor extent in vivo and building accurate image-based analytic tools for rectal cancers.
ABSTRACT
Localized disease heterogeneity on imaging extracted via radiomics approaches have recently been associated with disease prognosis and treatment response. Traditionally, radiomics analyses leverage texture operators to derive voxel- or region-wise feature values towards quantifying subtle variations in image appearance within a region-of-interest (ROI). With the goal of mining additional voxel-wise texture patterns from radiomic "expression maps", we introduce a new RADIomic Spatial TexturAl descripTor (RADISTAT). This was driven by the hypothesis that quantifying spatial organization of texture patterns within an ROI could allow for better capturing interactions between different tissue classes present in a given region; thus enabling more accurate characterization of disease or response phenotypes. RADISTAT involves: (a) robustly identifying sub-compartments of low, intermediate, and high radiomic expression (i.e. heterogeneity) in a feature map and (b) quantifying spatial organization of sub-compartments via graph interactions. RADISTAT was evaluated in two clinically challenging problems: (1) discriminating nodal/distant metastasis from metastasis-free rectal cancer patients on post-chemoradiation T2w MRI, and (2) distinguishing tumor progression from pseudo-progression in glioblastoma multiforme using post-chemoradiation T1w MRI. Across over 800 experiments, RADISTAT yielded a consistent discriminatory signature for tumor progression (GBM) and disease metastasis (RCa); where its sub-compartments were associated with pathologic tissue types (fibrosis or tumor, determined via fusion of MRI and pathology). In a multi-institutional setting for both clinical problems, RADISTAT resulted in higher classifier performance (11% improvement in AUC, on average) compared to radiomic descriptors. Furthermore, combining RADISTAT with radiomic descriptors resulted in significantly improved performance compared to using radiomic descriptors alone.
Subject(s)
Glioblastoma , Humans , Magnetic Resonance Imaging/methods , PrognosisABSTRACT
(1) Background: The relatively poor expert restaging accuracy of MRI in rectal cancer after neoadjuvant chemoradiation may be due to the difficulties in visual assessment of residual tumor on post-treatment MRI. In order to capture underlying tissue alterations and morphologic changes in rectal structures occurring due to the treatment, we hypothesized that radiomics texture and shape descriptors of the rectal environment (e.g., wall, lumen) on post-chemoradiation T2-weighted (T2w) MRI may be associated with tumor regression after neoadjuvant chemoradiation therapy (nCRT). (2) Methods: A total of 94 rectal cancer patients were retrospectively identified from three collaborating institutions, for whom a 1.5 or 3T T2w MRI was available after nCRT and prior to surgical resection. The rectal wall and the lumen were annotated by an expert radiologist on all MRIs, based on which 191 texture descriptors and 198 shape descriptors were extracted for each patient. (3) Results: Top-ranked features associated with pathologic tumor-stage regression were identified via cross-validation on a discovery set (n = 52, 1 institution) and evaluated via discriminant analysis in hold-out validation (n = 42, 2 institutions). The best performing features for distinguishing low (ypT0-2) and high (ypT3-4) pathologic tumor stages after nCRT comprised directional gradient texture expression and morphologic shape differences in the entire rectal wall and lumen. Not only were these radiomic features found to be resilient to variations in magnetic field strength and expert segmentations, a quadratic discriminant model combining them yielded consistent performance across multiple institutions (hold-out AUC of 0.73). (4) Conclusions: Radiomic texture and shape descriptors of the rectal wall from post-treatment T2w MRIs may be associated with low and high pathologic tumor stage after neoadjuvant chemoradiation therapy and generalized across variations between scanners and institutions.