ABSTRACT
Portal hypertension (PHTN) is a severe complication of liver cirrhosis and is associated with intrahepatic sinusoidal remodeling induced by sinusoidal resistance and angiogenesis. Collagen type IV (COL4), a major component of basement membrane, forms in liver sinusoids upon chronic liver injury. However, the role, cellular source, and expression regulation of COL4 in liver diseases are unknown. Here, we examined how COL4 is produced and how it regulates sinusoidal remodeling in fibrosis and PHTN. Human cirrhotic liver sample RNA sequencing showed increased COL4 expression, which was further verified via immunofluorescence staining. Single-cell RNA sequencing identified liver sinusoidal endothelial cells (LSECs) as the predominant source of COL4 upregulation in mouse fibrotic liver. In addition, COL4 was upregulated in a TNF-α/NF-κB-dependent manner through an epigenetic mechanism in LSECs in vitro. Indeed, by utilizing a CRISPRi-dCas9-KRAB epigenome-editing approach, epigenetic repression of the enhancer-promoter interaction showed silencing of COL4 gene expression. LSEC-specific COL4 gene mutation or repression in vivo abrogated sinusoidal resistance and angiogenesis, which thereby alleviated sinusoidal remodeling and PHTN. Our findings reveal that LSECs promote sinusoidal remodeling and PHTN during liver fibrosis through COL4 deposition.
Subject(s)
Collagen Type IV , Endothelial Cells , Hypertension, Portal , Liver Cirrhosis , Liver , Hypertension, Portal/metabolism , Hypertension, Portal/pathology , Hypertension, Portal/genetics , Animals , Collagen Type IV/metabolism , Collagen Type IV/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver/pathology , Liver/metabolism , Liver/blood supply , Male , NF-kappa B/metabolism , Mice, Inbred C57BL , Epigenesis, GeneticABSTRACT
Cellular senescence and biliary fibrosis are prototypical features of obliterative cholangiopathies, such as primary sclerosing cholangitis (PSC). Telomere dysfunction can lead to senescence either through telomere erosion or damaged telomeres. Our goal was to investigate a mechanistic relationship between telomere damage and biliary fibrosis in PSC. Telomere attrition was observed in the bile ducts of patients with PSC along with a reduction in telomerase reverse transcriptase (TERT) expression, compared with that in normal livers. Similarly, liver tissue from mouse models of biliary fibrosis showed telomere attrition with increased damage at telomeres measured as telomere-associated foci (TAF). Cellular models of senescence induction increased the TAF in cholangiocytes. This coincided with decreased TERT expression and increased senescence, which was rescued by modulating TERT levels. Epigenetic analysis revealed increased acquisition of repressive histone methylation at the TERT promoter, which correlated with decreased TERT transcription. Cholangiocyte-selective deletion of TERT in mice exacerbated fibrosis, whereas androgen therapy toward telomerase rescued liver fibrosis and liver function in a genetic mouse model of PSC. Our results demonstrate a mechanistic role for telomere dysfunction in cellular senescence and fibrosis that characterize PSC. This suggests that PSC may be, in part, a telomere biology disorder, and identifies TERT as a potential therapeutic target.