Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 141(6): 943-55, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20550931

ABSTRACT

Reprogramming of somatic cells achieved by combination of the four transcription factors Oct4, Sox2, Klf4, and c-Myc has very low efficiency. To increase the reprogramming efficiency and better understand the process, we sought to identify factors that mediate reprogramming with higher efficiency. We established an assay to screen nuclear fractions from extracts of pluripotent mouse cells based on Oct4 reactivation. Using proteomics, we identified components of the ATP-dependent BAF chromatin-remodeling complex, which significantly increases reprogramming efficiency when used together with the four factors. The reprogrammed cells could transmit to the germline and exhibited pluripotency. Reprogramming remained highly efficient when c-Myc was not present but BAF components were overexpressed. BAF complex components mediate this effect by facilitating enhanced Oct4 binding to target promoters during reprogramming. Thus, somatic cell reprogramming using chromatin-remodeling molecules represents an efficient method of generating reprogrammed cells.


Subject(s)
Cellular Reprogramming , Chromatin Assembly and Disassembly , Animals , Cell Line , Chromatin/metabolism , DNA Helicases/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Kruppel-Like Factor 4 , Mice , Nuclear Proteins/metabolism , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism
2.
Cell ; 143(4): 617-27, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21056461

ABSTRACT

Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. Oct4-GFP negative cells share features with cells of the late mouse epiblast and cannot form chimeras. However, Oct4-GFP positive EpiSCs, which only represent a minor EpiSC fraction, resemble cells of the early epiblast and can readily contribute to chimeras. Our findings suggest that the rare ability of EpiSCs to contribute to chimeras is due to the presence of the minor EpiSC fraction representing the early epiblast.


Subject(s)
Germ Layers/cytology , Mice/embryology , Stem Cells/cytology , Animals , Female , Gene Expression Profiling , Male , Mice, 129 Strain , Mice, Inbred C57BL , Octamer Transcription Factor-3/analysis , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
3.
Cell ; 136(3): 411-9, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19203577

ABSTRACT

The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.


Subject(s)
Adult Stem Cells/metabolism , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , Alkaline Phosphatase/metabolism , Animals , Cell Differentiation , Cells, Cultured , Cellular Reprogramming , Embryonic Stem Cells/metabolism , Germ Cells/cytology , Kruppel-Like Factor 4 , Lewis X Antigen/metabolism , Mice , Myocytes, Cardiac/cytology
4.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000438

ABSTRACT

Strong epigenetic pan-cancer biomarkers are required to meet several current, urgent clinical needs and to further improve the present chemotherapeutic standard. We have concentrated on the investigation of epigenetic alteration of the hTERT gene, which is frequently epigenetically dysregulated in a number of cancers in specific developmental stages. Distinct DNA methylation profiles were identified in our data on early urothelial cancer. An efficient EpihTERT assay could be developed utilizing suitable combinations with sequence-dependent thermodynamic parameters to distinguish between differentially methylated states. We infer from this data set, the epigenetic context, and the related literature that a CpG-rich, 2800 bp region, a prominent CpG island, surrounding the transcription start of the hTERT gene is the crucial epigenetic zone for the development of a potent biomarker. In order to accurately describe this region, we have named it "Acheron" (Ἀχέρων). In Greek mythology, this is the river of woe and misery and the path to the underworld. Exploitation of the DNA methylation profiles focused on this region, e.g., idiolocal normalized Methylation Specific PCR (IDLN-MSP), opens up a wide range of new possibilities for diagnosis, determination of prognosis, follow-up, and detection of residual disease. It may also have broad implications for the choice of chemotherapy.


Subject(s)
Biomarkers, Tumor , DNA Methylation , Epigenesis, Genetic , Neoplasms , Telomerase , Humans , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , CpG Islands , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/diagnosis , Telomerase/genetics
5.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612777

ABSTRACT

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Subject(s)
Glioblastoma , Glioma , Parkinson Disease , Humans , Glioblastoma/genetics , Membrane Proteins/genetics , Endothelial Cells , Angiogenesis , Glioma/genetics , Neuroglia , Neovascularization, Pathologic/genetics
6.
Nat Chem Biol ; 17(1): 47-56, 2021 01.
Article in English | MEDLINE | ID: mdl-32807969

ABSTRACT

Identifying molecular and cellular processes that regulate reprogramming competence of transcription factors broadens our understanding of reprogramming mechanisms. In the present study, by a chemical screen targeting major epigenetic pathways in human reprogramming, we discovered that inhibiting specific epigenetic roadblocks including disruptor of telomeric silencing 1-like (DOT1L)-mediated H3K79/K27 methylation, but also other epigenetic pathways, catalyzed by lysine-specific histone demethylase 1A, DNA methyltransferases and histone deacetylases, allows induced pluripotent stem cell generation with almost all OCT factors. We found that simultaneous inhibition of these pathways not only dramatically enhances reprogramming competence of most OCT factors, but in fact enables dismantling of species-dependent reprogramming competence of OCT6, NR5A1, NR5A2, TET1 and GATA3. Harnessing these induced permissive epigenetic states, we performed an additional screen with 98 candidate genes. Thereby, we identified 25 transcriptional regulators (OTX2, SIX3, and so on) that can functionally replace OCT4 in inducing pluripotency. Our findings provide a conceptual framework for understanding how transcription factors elicit reprogramming in dependency of the donor cell epigenome that differs across species.


Subject(s)
Cellular Reprogramming , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Line , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Human Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Octamer Transcription Factors/genetics , Octamer Transcription Factors/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Plasmids/chemistry , Plasmids/metabolism , Species Specificity , Transcription, Genetic , Transfection , Homeobox Protein SIX3
7.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769072

ABSTRACT

To bring new extrachromosomal circular DNA (eccDNA) enrichment technologies closer to the clinic, specifically for screening, early diagnosis, and monitoring of diseases or lifestyle conditions, it is paramount to identify the differential pattern of the genic eccDNA signal between two states. Current studies using short-read sequenced purified eccDNA data are based on absolute numbers of unique eccDNAs per sample or per gene, length distributions, or standard methods for RNA-seq differential analysis. Previous analyses of RNA-seq data found significant transcriptomics difference between sedentary and active life style skeletal muscle (SkM) in young people but very few in old. The first attempt using circulomics data from SkM and blood of aged lifelong sedentary and physically active males found no difference at eccDNA level. To improve the capability of finding differences between circulomics data groups, we designed a computational method to identify Differentially Produced per Gene Circles (DPpGCs) from short-read sequenced purified eccDNA data based on the circular junction, split-read signal, of the eccDNA, and implemented it into a software tool DifCir in Matlab. We employed DifCir to find to the distinctive features of the influence of the physical activity or inactivity in the aged SkM that would have remained undetected by transcriptomics methods. We mapped the data from tissue from SkM and blood from two groups of aged lifelong sedentary and physically active males using Circle_finder and subsequent merging and filtering, to find the number and length distribution of the unique eccDNA. Next, we used DifCir to find up-DPpGCs in the SkM of the sedentary and active groups. We assessed the functional enrichment of the DPpGCs using Disease Gene Network and Gene Set Enrichment Analysis. To find genes that produce eccDNA in a group without comparison with another group, we introduced a method to find Common PpGCs (CPpGCs) and used it to find CPpGCs in the SkM of the sedentary and active group. Finally, we found the eccDNA that carries whole genes. We discovered that the eccDNA in the SkM of the sedentary group is not statistically different from that of physically active aged men in terms of number and length distribution of eccDNA. In contrast, with DifCir we found distinctive gene-associated eccDNA fingerprints. We identified statistically significant up-DPpGCs in the two groups, with the top up-DPpGCs shed by the genes AGBL4, RNF213, DNAH7, MED13, and WWTR1 in the sedentary group, and ZBTB7C, TBCD, ITPR2, and DDX11-AS1 in the active group. The up-DPpGCs in both groups carry mostly gene fragments rather than whole genes. Though the subtle transcriptomics difference, we found RYR1 to be both transcriptionally up-regulated and up-DPpGCs gene in sedentary SkM. DifCir emphasizes the high sensitivity of the circulome compared to the transcriptome to detect the molecular fingerprints of exercise in aged SkM. It allows efficient identification of gene hotspots that excise more eccDNA in a health state or disease compared to a control condition.


Subject(s)
DNA, Circular , DNA , Male , Humans , Adolescent , Aged , DNA, Circular/genetics , Base Sequence , Muscle, Skeletal , Intracellular Signaling Peptides and Proteins/genetics , DNA Helicases/genetics , DEAD-box RNA Helicases/genetics , Microtubule-Associated Proteins/genetics , Adenosine Triphosphatases/genetics , Ubiquitin-Protein Ligases/genetics
8.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613831

ABSTRACT

With approximately 1.4 million men annually diagnosed with prostate cancer (PCa) worldwide, PCa remains a dreaded threat to life and source of devastating morbidity. In recent decades, a significant decrease in age-specific PCa mortality has been achieved by increasing prostate-specific antigen (PSA) screening and improving treatments. Nevertheless, upcoming, augmented recommendations against PSA screening underline an escalating disproportion between the benefit and harm of current diagnosis/prognosis and application of radical treatment standards. Undoubtedly, new potent diagnostic and prognostic tools are urgently needed to alleviate this tensed situation. They should allow a more reliable early assessment of the upcoming threat, in order to enable applying timely adjusted and personalized therapy and monitoring. Here, we present a basic study on an epigenetic screening approach by Methylated DNA Immunoprecipitation (MeDIP). We identified genes associated with hypomethylated CpG islands in three PCa sample cohorts. By adjusting our computational biology analyses to focus on single CpG-enriched 60-nucleotide-long DNA probes, we revealed numerous consistently differential methylated DNA segments in PCa. They were associated among other genes with NOTCH3, CDK2AP1, KLK4, and ADAM15. These can be used for early discrimination, and might contribute to a new epigenetic tumor classification system of PCa. Our analysis shows that we can dissect short, differential methylated CpG-rich DNA fragments and combinations of them that are consistently present in all tumors. We name them tumor cell-specific differential methylated CpG dinucleotide signatures (TUMS).


Subject(s)
DNA Methylation , Prostatic Neoplasms , Humans , Male , ADAM Proteins/genetics , CpG Islands , DNA , Membrane Proteins/genetics , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
9.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163453

ABSTRACT

Epigenetic mechanisms are fundamentally important for cancer initiation and development. However, a survey of the literature reveals that, to date, they appear less comprehensively investigated in melanoma than in many other cancers, e.g., prostate, breast, and colon carcinoma. The aim of this review is to provide a short summary of epigenetic aspects of functional relevance for melanoma pathogenesis. In addition, some new perspectives from epigenetic research in other cancers with potential for melanoma diagnosis and therapy are introduced. For example, the PrimeEpiHit hypothesis in urothelial carcinoma, which, similarly to malignant melanoma, can also be triggered by a single exogenous noxa, states that one of the first steps for cancer initiation could be epigenetic changes in key genes of one-carbon metabolism. The application of such insights may contribute to further progress in the diagnosis and therapy of melanoma, a deadly type of cancer.


Subject(s)
Epigenesis, Genetic , Gene Regulatory Networks , Melanoma/genetics , DNA Methylation , Early Detection of Cancer , Humans , Melanoma/diagnosis , Melanoma/therapy
10.
J Hepatol ; 75(6): 1420-1433, 2021 12.
Article in English | MEDLINE | ID: mdl-34453962

ABSTRACT

BACKGROUND & AIMS: Therapeutic targeting of injuries that require transient restoration of proteins by mRNA delivery is an attractive approach that, until recently, has remained poorly explored. In this study, we examined the therapeutic utility of mRNA delivery for liver fibrosis and cirrhosis. Specifically, we aimed to demonstrate the therapeutic efficacy of human hepatocyte nuclear factor alpha (HNF4A) mRNA in mouse models of fibrosis and cirrhosis. METHODS: We investigated restoration of hepatocyte functions by HNF4A mRNA transfection in vitro, and analyzed the attenuation of liver fibrosis and cirrhosis in multiple mouse models, by delivering hepatocyte-targeted biodegradable lipid nanoparticles (LNPs) encapsulating HNF4A mRNA. To identify potential mechanisms of action, we performed microarray-based gene expression profiling, single-cell RNA sequencing, and chromatin immunoprecipitation. We used primary liver cells and human liver buds for additional functional validation. RESULTS: Expression of HNF4A mRNA led to restoration of the metabolic activity of fibrotic primary murine and human hepatocytes in vitro. Repeated in vivo delivery of LNP-encapsulated HNF4A mRNA induced a robust inhibition of fibrogenesis in 4 independent mouse models of hepatotoxin- and cholestasis-induced liver fibrosis. Mechanistically, we discovered that paraoxonase 1 is a direct target of HNF4A and it contributes to HNF4A-mediated attenuation of liver fibrosis via modulation of liver macrophages and hepatic stellate cells. CONCLUSION: Collectively, our findings provide the first direct preclinical evidence of the applicability of HNF4A mRNA therapeutics for the treatment of fibrosis in the liver. LAY SUMMARY: Liver fibrosis and cirrhosis remain unmet medical needs and contribute to high mortality worldwide. Herein, we take advantage of a promising therapeutic approach to treat liver fibrosis and cirrhosis. We demonstrate that restoration of a key gene, HNF4A, via mRNA encapsulated in lipid nanoparticles decreased injury in multiple mouse models of fibrosis and cirrhosis. Our study provides proof-of-concept that mRNA therapy is a promising strategy for reversing liver fibrosis and cirrhosis.


Subject(s)
Hepatocyte Nuclear Factor 4/pharmacology , Liver Cirrhosis/drug therapy , Animals , Disease Models, Animal , Hepatocyte Nuclear Factor 4/therapeutic use , Mice , RNA, Messenger/pharmacology , RNA, Messenger/therapeutic use
11.
Int J Mol Sci ; 22(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062897

ABSTRACT

Cancer is a phenomenon broadly related to ageing in various ways such as cell cycle deregulation, metabolic defects or telomerases dysfunction as principal processes. Although the tumor cell is the main actor in cancer progression, it is not the only element of the disease. Cells and the matrix surrounding the tumor, called the tumor microenvironment (TME), play key roles in cancer progression. Phenotypic changes of the TME are indispensable for disease progression and a few of these transformations are produced by epigenetic changes including miRNA dysregulation. In this study, we found that a specific group of miRNAs in the liver TME produced by colon cancer called geromiRs, which are miRNAs related to the ageing process, are significantly downregulated. The three principal cell types involved in the liver TME, namely, liver sinusoidal endothelial cells, hepatic stellate (Ito) cells and Kupffer cells, were isolated from a murine hepatic metastasis model, and the miRNA and gene expression profiles were studied. From the 115 geromiRs and their associated hallmarks of aging, which we compiled from the literature, 75 were represented in the used microarrays, 26 out of them were downregulated in the TME cells during colon cancer colonization of the liver, and none of them were upregulated. The histone modification hallmark of the downregulated geromiRs is significantly enriched with the geromiRs miR-15a, miR-16, miR-26a, miR-29a, miR-29b and miR-29c. We built a network of all of the geromiRs downregulated in the TME cells and their gene targets from the MirTarBase database, and we analyzed the expression of these geromiR gene targets in the TME. We found that Cercam and Spsb4, identified as prognostic markers in a few cancer types, are associated with downregulated geromiRs and are upregulated in the TME cells.


Subject(s)
Colonic Neoplasms/genetics , Hepatic Stellate Cells/metabolism , Liver/metabolism , MicroRNAs/genetics , Animals , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/genetics , Hepatic Stellate Cells/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Kupffer Cells/metabolism , Kupffer Cells/pathology , Liver/pathology , Mice , MicroRNAs/classification
12.
Malar J ; 19(1): 49, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996238

ABSTRACT

BACKGROUND: Vaccination induces survival of otherwise lethal blood-stage infections of the experimental malaria Plasmodium chabaudi. Blood-stage malaria induces extramedullary erythropoiesis in the liver. This study investigates how vaccination affects the course of malaria-induced expression of erythrocytic genes in the liver. METHODS: Female Balb/c mice were vaccinated at week 3 and week 1 before challenging with 106 P. chabaudi-parasitized erythrocytes. The non-infectious vaccine consisted of erythrocyte ghosts isolated from P. chabaudi-infected erythrocytes. Gene expression microarrays and quantitative real-time PCR were used to compare mRNA expression of different erythrocytic genes in the liver of vaccination-protected and non-protected mice during infections on days 0, 1, 4, 8, and 11 p.i. RESULTS: Global transcriptomics analyses reveal vaccination-induced modifications of malaria-induced increases in hepatic gene expression on days 4 and 11 p.i. On these days, vaccination also alters hepatic expression of the erythropoiesis-involved genes Ermap, Kel, Rhd, Rhag, Slc4a1, Gypa, Add2, Ank1, Epb4.1, Epb4.2, Epb4.9, Spta1, Sptb, Tmod1, Ahsp, Acyp1, Gata1, Gfi1b, Tal1, Klf1, Epor, and Cldn13. In vaccination-protected mice, expression of these genes, except Epb4.1, is significantly higher on day 4 p.i. than in un-protected non-vaccinated mice, reaches maximal expression at peak parasitaemia on day 8 p.i., and is slowed down or even decreased towards the end of crisis phase on day 11 p.i.. After day 1 p.i., Epor expression takes about the same course as that of the other erythroid genes. Hepatic expression of Epo, however, is delayed in both vaccinated and non-vaccinated mice for the first 4 days p.i. and is maximal at significantly higher levels in vaccinated mice on day 8 p.i., before declining towards the end of crisis phase on day 11 p.i. CONCLUSION: The present data indicate that vaccination accelerates malaria-induced erythroblastosis in the liver for 1-2 days. This may contribute to earlier replenishment of peripheral red blood cells by liver-derived reticulocytes, which may favour final survival of otherwise lethal blood-stage malaria, since reticulocytes are not preferred as host cells by P. chabaudi.


Subject(s)
Erythropoiesis/immunology , Liver/pathology , Malaria/blood , Plasmodium chabaudi/immunology , Vaccination/adverse effects , Animals , Erythrocyte Membrane/immunology , Erythropoiesis/genetics , Female , Liver/parasitology , Malaria/pathology , Malaria Vaccines/adverse effects , Mice , Mice, Inbred BALB C , Principal Component Analysis , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free Organisms , Transcriptome
13.
Glia ; 67(5): 870-883, 2019 05.
Article in English | MEDLINE | ID: mdl-30623969

ABSTRACT

In multiple sclerosis, demyelination occurs as a consequence of chronic autoimmunity in the central nervous system causing progressive neurological impairment in patients. After a demyelinating event, new myelin sheaths are formed by adult oligodendroglial progenitor cells; a process called remyelination. However, remyelination often fails in multiple sclerosis due to insufficient recruitment and differentiation of oligodendroglial precursor cells. A pivotal role for the two-pore-domain potassium (K2P ) channel, TASK1, has already been proven for an animal model of multiple sclerosis. However, the mechanisms underlying the TASK1-mediated effects are still elusive. Here, we tested the role of TASK1 channels in oligodendroglial differentiation and remyelination after cuprizone-induced demyelination in male mice. We found TASK1 channels to be functionally expressed on primary murine and human, pluripotent stem cell-derived oligodendrocytes. Lack of TASK1 channels resulted in an increase of mature oligodendrocytes in vitro as well as a higher number of mature oligodendrocytes and accelerated developmental myelination in vivo. Mechanistically, Task1-deficient cells revealed a higher amount of phosphorylated WNK1, a kinase known to be involved in the downstream signaling of the myelination regulator LINGO-1. Furthermore, we analyzed the effect of genetic TASK1 ablation or pharmacological TASK1 inhibition on disease-related remyelination. Neither channel inhibition nor lack of TASK1 channels promoted remyelination after pathological demyelination. In summary, we conclude that functional TASK1 channels participate in the modulation of differentiating oligodendroglial cells in a previously unknown manner. However, while being involved in developmental myelination our data suggest that TASK1 channels have no major effect on remyelination.


Subject(s)
Cell Differentiation/genetics , Demyelinating Diseases/pathology , Nerve Tissue Proteins/metabolism , Oligodendroglia/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Anesthetics, Local/pharmacology , Animals , Animals, Newborn , Bupivacaine/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Movement/drug effects , Cell Movement/genetics , Cells, Cultured , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monoamine Oxidase Inhibitors/toxicity , Myelin Proteins/genetics , Myelin Proteins/metabolism , Myelin Proteins/ultrastructure , Nerve Tissue Proteins/genetics , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/physiology , Oligodendrocyte Precursor Cells/ultrastructure , Oligodendroglia/drug effects , Oligodendroglia/physiology , Oligodendroglia/ultrastructure , Potassium Channels, Tandem Pore Domain/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Transcription Factors/metabolism , Transcription Factors/pharmacology
14.
EMBO J ; 34(23): 2971-83, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26497893

ABSTRACT

The generation of patient-specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4-mediated direct reprogramming, using anchorage-independent growth to ensure high purity. Homogeneous iOPCs exhibit typical small-bipolar morphology, maintain their self-renewal capacity and OPC marker expression for more than 31 passages, share high similarity in the global gene expression profile to wild-type OPCs, and give rise to mature oligodendrocytes and astrocytes in vitro and in vivo. Notably, transplanted iOPCs contribute to functional recovery in a spinal cord injury (SCI) model without tumor formation. This study provides a simple strategy to generate functional self-renewing iOPCs and yields insights for the in-depth study of demyelination and regenerative medicine.


Subject(s)
Octamer Transcription Factor-3/metabolism , Oligodendroglia/metabolism , Oligodendroglia/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Stem Cells/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Fibroblasts/cytology , Immunohistochemistry , Karyotype , Male , Mice , Mice, SCID , Octamer Transcription Factor-3/genetics , Oligodendroglia/cytology , Rats , Recovery of Function/physiology , Spinal Cord Injuries/genetics , Stem Cell Transplantation , Stem Cells/cytology , Stem Cells/physiology
15.
EMBO J ; 34(8): 1009-24, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25750208

ABSTRACT

Primordial germ cells (PGCs) develop only into sperm and oocytes in vivo. The molecular mechanisms underlying human PGC specification are poorly understood due to inaccessibility of cell materials and lack of in vitro models for tracking the earliest stages of germ cell development. Here, we describe a defined and stepwise differentiation system for inducing pre-migratory PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs). In response to cytokines, PSCs differentiate first into a heterogeneous mesoderm-like cell population and then into PGCLCs, which exhibit minimal PRDM14 expression. PGC specification in humans is similar to the murine process, with the sequential activation of mesodermal and PGC genes, and the suppression of neural induction and of de novo DNA methylation, suggesting that human PGC formation is induced via epigenesis, the process of germ cell specification via inductive signals from surrounding somatic cells. This study demonstrates that PGC commitment in humans shares key features with that of the mouse, but also highlights key differences, including transcriptional regulation during the early stage of human PGC development (3-6 weeks). A more comprehensive understanding of human germ cell development may lead to methodology for successfully generating PSC-derived gametes for reproductive medicine.


Subject(s)
Cell Differentiation/genetics , Germ Cells/physiology , Pluripotent Stem Cells/physiology , Repressor Proteins/genetics , Activins/pharmacology , Animals , Bone Morphogenetic Protein 4/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , DNA-Binding Proteins , Epigenesis, Genetic , Fibroblast Growth Factor 2/pharmacology , Germ Cells/cytology , Humans , Mice , Microarray Analysis , Pluripotent Stem Cells/drug effects , RNA-Binding Proteins , Transcription Factors , Transcriptome/drug effects
16.
EMBO Rep ; 18(2): 319-333, 2017 02.
Article in English | MEDLINE | ID: mdl-28007765

ABSTRACT

The transcription factor Oct4 is a core component of molecular cocktails inducing pluripotent stem cells (iPSCs), while other members of the POU family cannot replace Oct4 with comparable efficiency. Rather, group III POU factors such as Oct6 induce neural lineages. Here, we sought to identify molecular features determining the differential DNA-binding and reprogramming activity of Oct4 and Oct6. In enhancers of pluripotency genes, Oct4 cooperates with Sox2 on heterodimeric SoxOct elements. By re-analyzing ChIP-Seq data and performing dimerization assays, we found that Oct6 homodimerizes on palindromic OctOct more cooperatively and more stably than Oct4. Using structural and biochemical analyses, we identified a single amino acid directing binding to the respective DNA elements. A change in this amino acid decreases the ability of Oct4 to generate iPSCs, while the reverse mutation in Oct6 does not augment its reprogramming activity. Yet, with two additional amino acid exchanges, Oct6 acquires the ability to generate iPSCs and maintain pluripotency. Together, we demonstrate that cell type-specific POU factor function is determined by select residues that affect DNA-dependent dimerization.


Subject(s)
Cell Transdifferentiation/genetics , Cellular Reprogramming/genetics , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , POU Domain Factors/chemistry , POU Domain Factors/metabolism , Protein Multimerization , Amino Acid Substitution , Animals , Binding Sites , Cell Line , Embryonic Stem Cells , Enhancer Elements, Genetic , Epigenesis, Genetic , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Models, Molecular , Nucleotide Motifs , Octamer Transcription Factors/chemistry , Octamer Transcription Factors/genetics , Octamer Transcription Factors/metabolism , POU Domain Factors/genetics , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Protein Stability , Transcriptome
17.
Nature ; 493(7431): 226-30, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23201681

ABSTRACT

Mechanisms controlling the proliferative activity of neural stem and progenitor cells (NSPCs) have a pivotal role to ensure life-long neurogenesis in the mammalian brain. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (Fasn), the key enzyme of de novo lipogenesis, is highly active in adult NSPCs and that conditional deletion of Fasn in mouse NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene previously implicated in lipid metabolism, that we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA, which is an essential substrate for Fasn to fuel lipogenesis. Thus, we identify here a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation.


Subject(s)
Adult Stem Cells/metabolism , Fatty Acid Synthases/metabolism , Lipogenesis , Neural Stem Cells/metabolism , Adult Stem Cells/cytology , Animals , Cell Proliferation , Dentate Gyrus/metabolism , Fatty Acid Synthases/deficiency , Fatty Acid Synthases/genetics , Gene Expression Profiling , Hippocampus/cytology , Hippocampus/metabolism , Malonyl Coenzyme A/metabolism , Mice , Mice, Transgenic , Neural Stem Cells/cytology , Neurogenesis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Int J Cancer ; 143(3): 709-719, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29492958

ABSTRACT

Phenotypic transformation of liver sinusoidal endothelial cells is one of the most important stages of liver metastasis progression. The miRNA effects on liver sinusoidal endothelial cells during liver metastasis have not yet been studied. Herein, whole genome analysis of miRNA expression in these cells during colorectal liver metastasis revealed repressed expression of microRNA-20a. Importantly, downregulation of miR-20a occurs in parallel with upregulation of its known protein targets. To restore normal miR-20a levels in liver sinusoidal endothelial cells, we developed chondroitin sulfate-sorbitan ester nanoparticles conjugated with miR-20a in a delivery system that specifically targets liver sinusoidal endothelial cells. The restoration of normal mir-20a levels in these cells induced downregulation of the expression of its protein targets, and this also resulted in a reduction of in vitro LSEC migration and a reduction of in vivo activation and tumor-infiltrating capacity and ability of the tumor decreased by ∼80% in a murine liver metastasis model.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Endothelial Cells/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/secondary , MicroRNAs/genetics , Nanoparticles , Animals , Biomarkers , Cell Line, Tumor , Cells, Cultured , Colonic Neoplasms/metabolism , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Heterografts , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Male , Mice , MicroRNAs/chemistry , Nanoparticles/chemistry , Signal Transduction
19.
Bioinformatics ; 33(3): 428-431, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28172520

ABSTRACT

Motivation: Bisulfite sequencing (BSseq) processing is among the most cumbersome next generation sequencing (NGS) applications. Though some BSseq processing tools are available, they are scattered, require puzzling parameters and are running-time and memory-usage demanding. Results: We developed P3BSseq, a parallel processing pipeline for fast, accurate and automatic analysis of BSseq reads that trims, aligns, annotates, records the intermediate results, performs bisulfite conversion quality assessment, generates BED methylome and report files following the NIH standards. P3BSseq outperforms the known BSseq mappers regarding running time, computer hardware requirements (processing power and memory use) and is optimized to process the upcoming, extended BSseq reads. We optimized the P3BSseq parameters for directional and non-directional libraries, and for single-end and paired-end reads of Whole Genome and Reduced Representation BSseq. P3BSseq is a user-friendly streamlined solution for BSseq upstream analysis, requiring only basic computer and NGS knowledge. Availability and Implementation: P3BSseq binaries and documentation are available at: http://sourceforge.net/p/p3bsseq/wiki/Home/ Contact: mararabra@yahoo.co.uk Supplimentary Information: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software , Electronic Data Processing/methods , Genomics/methods , Humans , Sulfites
20.
Malar J ; 17(1): 215, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29843710

ABSTRACT

BACKGROUND: The role of the liver for survival of blood-stage malaria is only poorly understood. In experimental blood-stage malaria with Plasmodium chabaudi, protective vaccination induces healing and, thus, survival of otherwise lethal infections. This model is appropriate to study the role of the liver in vaccination-induced survival of blood-stage malaria. METHODS: Female Balb/c mice were vaccinated with a non-infectious vaccine consisting of plasma membranes isolated in the form of erythrocyte ghosts from P. chabaudi-infected erythrocytes at week 3 and week 1 before infection with P. chabaudi blood-stage malaria. Gene expression microarrays and quantitative real-time PCR were used to investigate the response of the liver, in terms of expression of mRNA and long intergenic non-coding (linc)RNA, to vaccination-induced healing infections and lethal P. chabaudi malaria at early patency on day 4 post infection, when parasitized erythrocytes begin to appear in peripheral blood. RESULTS: In vaccination-induced healing infections, 23 genes were identified to be induced in the liver by > tenfold at p < 0.01. More than one-third were genes known to be involved in erythropoiesis, such as Kel, Rhag, Ahsp, Ermap, Slc4a1, Cldn13 Gata1, and Gfi1b. Another group of > tenfold expressed genes include genes involved in natural cytotoxicity, such as those encoding killer cell lectin-like receptors Klrb1a, Klrc3, Klrd1, the natural cytotoxicity-triggering receptor 1 Ncr1, as well as the granzyme B encoding Gzmb. Additionally, a series of genes involved in the control of cell cycle and mitosis were identified: Ccnb1, Cdc25c, Ckap2l were expressed > tenfold only in vaccination-protected mice, and the expression of 22 genes was at least 100% higher in vaccination-protected mice than in non-vaccinated mice. Furthermore, distinct lincRNA species were changed by > threefold in livers of vaccination-protected mice, whereas lethal malaria induced different lincRNAs. CONCLUSION: The present data suggest that protective vaccination accelerates the malaria-induced occurrence of extramedullary erythropoiesis, generation of liver-resident cytotoxic cells, and regeneration from malaria-induced injury in the liver at early patency, which may be critical for final survival of otherwise lethal blood-stage malaria of P. chabaudi.


Subject(s)
Gene Expression , Malaria Vaccines/immunology , Malaria/genetics , Plasmodium chabaudi/physiology , Animals , Female , Liver/metabolism , Liver/parasitology , Malaria/immunology , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL