Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Nature ; 615(7954): 900-906, 2023 03.
Article in English | MEDLINE | ID: mdl-36922585

ABSTRACT

Sex chromosome disorders severely compromise gametogenesis in both males and females. In oogenesis, the presence of an additional Y chromosome or the loss of an X chromosome disturbs the robust production of oocytes1-5. Here we efficiently converted the XY chromosome set to XX without an additional Y chromosome in mouse pluripotent stem (PS) cells. In addition, this chromosomal alteration successfully eradicated trisomy 16, a model of Down's syndrome, in PS cells. Artificially produced euploid XX PS cells differentiated into mature oocytes in culture with similar efficiency to native XX PS cells. Using this method, we differentiated induced pluripotent stem cells from the tail of a sexually mature male mouse into fully potent oocytes, which gave rise to offspring after fertilization. This study provides insights that could ameliorate infertility caused by sex chromosome or autosomal disorders, and opens the possibility of bipaternal reproduction.


Subject(s)
Genetic Engineering , In Vitro Techniques , Oocytes , X Chromosome , Animals , Female , Male , Mice , Oocytes/metabolism , Oocytes/physiology , X Chromosome/genetics , Y Chromosome/genetics , Pluripotent Stem Cells/metabolism , Down Syndrome/genetics , Down Syndrome/therapy , Fertilization , Infertility/therapy , Homosexuality, Male , Sex Chromosome Disorders/complications , Sex Chromosome Disorders/genetics , Sex Chromosome Disorders/therapy , Genetic Engineering/methods
2.
Cell ; 150(2): 351-65, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817897

ABSTRACT

Wnt signaling is involved in self-renewal and maintenance of hematopoietic stem cells (HSCs); however, the particular role of noncanonical Wnt signaling in regulating HSCs in vivo is largely unknown. Here, we show Flamingo (Fmi) and Frizzled (Fz) 8, members of noncanonical Wnt signaling, both express in and functionally maintain quiescent long-term HSCs. Fmi regulates Fz8 distribution at the interface between HSCs and N-cadherin(+) osteoblasts (N-cad(+)OBs that enrich osteoprogenitors) in the niche. We further found that N-cad(+)OBs predominantly express noncanonical Wnt ligands and inhibitors of canonical Wnt signaling under homeostasis. Under stress, noncanonical Wnt signaling is attenuated and canonical Wnt signaling is enhanced in activation of HSCs. Mechanistically, noncanonical Wnt signaling mediated by Fz8 suppresses the Ca(2+)-NFAT- IFNγ pathway, directly or indirectly through the CDC42-CK1α complex and also antagonizes canonical Wnt signaling in HSCs. Taken together, our findings demonstrate that noncanonical Wnt signaling maintains quiescent long-term HSCs through Fmi and Fz8 interaction in the niche.


Subject(s)
Cadherins/metabolism , Hematopoietic Stem Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Stem Cell Niche , Wnt Signaling Pathway , Animals , Cadherins/genetics , Female , Hematopoietic Stem Cells/cytology , Humans , Interferon-gamma/metabolism , Mice , Mice, Transgenic , NFATC Transcription Factors/metabolism , Receptors, G-Protein-Coupled/genetics
3.
Proc Natl Acad Sci U S A ; 120(32): e2206860120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523546

ABSTRACT

Mbtd1 (mbt domain containing 1) encodes a nuclear protein containing a zinc finger domain and four malignant brain tumor (MBT) repeats. We previously generated Mbtd1-deficient mice and found that MBTD1 is highly expressed in fetal hematopoietic stem cells (HSCs) and sustains the number and function of fetal HSCs. However, since Mbtd1-deficient mice die soon after birth possibly due to skeletal abnormalities, its role in adult hematopoiesis remains unclear. To address this issue, we generated Mbtd1 conditional knockout mice and analyzed adult hematopoietic tissues deficient in Mbtd1. We observed that the numbers of HSCs and progenitors increased and Mbtd1-deficient HSCs exhibited hyperactive cell cycle, resulting in a defective response to exogenous stresses. Mechanistically, we found that MBTD1 directly binds to the promoter region of FoxO3a, encoding a forkhead protein essential for HSC quiescence, and interacts with components of TIP60 chromatin remodeling complex and other proteins involved in HSC and other stem cell functions. Restoration of FOXO3a activity in Mbtd1-deficient HSCs in vivo rescued cell cycle and pool size abnormalities. These findings indicate that MBTD1 is a critical regulator for HSC pool size and function, mainly through the maintenance of cell cycle quiescence by FOXO3a.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Animals , Mice , Cell Cycle/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/metabolism
4.
Blood ; 142(19): 1622-1632, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37562000

ABSTRACT

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.


Subject(s)
Endothelial Cells , Stem Cell Factor , Mice , Animals , Stem Cell Factor/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Bone and Bones , Stem Cell Niche , Bone Marrow Cells/metabolism
5.
Cell ; 132(5): 729-30, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18329358

ABSTRACT

There is much interest in understanding the signals in the bone marrow niche that keep hematopoietic stem cells (HSCs) in a quiescent state. In the current issue of Cell Stem Cell, Fleming et al. (2008) report that blocking Wnt signaling in the niche increases the number of proliferating HSCs and reduces their ability to reconstitute the hematopoietic system of irradiated recipient mice. These findings show that Wnt/beta-catenin activity is crucial for the maintenance of HSC quiescence in the bone marrow niche.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Wnt Proteins/metabolism , Animals , Bone Marrow/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Transgenic , Osteoblasts/metabolism , Wnt Proteins/antagonists & inhibitors
6.
Genes Cells ; 25(12): 770-781, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33006802

ABSTRACT

Zebrafish is a useful model to study vertebrate hematopoiesis, but lack of antibodies to zebrafish proteins has limited purification of hematopoietic cells. Here, we purified neutrophils from larval and adult zebrafish using the lectin Phaseolus vulgaris erythroagglutinin (PHA-E) and DRAQ5, a DNA-staining fluorescent dye. In adult kidney marrow, we purified neutrophil-like PHA-E4low DRAQ5low cells, which neutrophil-type granules. Specifically, at 96-hr post-fertilization, we sorted large-sized cells from larvae using forward scatter and found that they consisted of PHA-Elow DRAQ5low populations. These cells had myeloperoxidase activity, were Sudan Black B-positive and expressed high levels of neutrophil-specific (csf3r and mpx) mRNAs, all neutrophil characteristics. Using this method, we conducted functional analysis suggesting that zyxin (Zyx) plays a role in neutrophil generation in zebrafish larvae. Overall, PHA-E and DRAQ5-based flow cytometry serves as a tool to purify zebrafish neutrophils.


Subject(s)
Flow Cytometry/methods , Hematopoiesis , Neutrophils/cytology , Primary Cell Culture/methods , Animals , Cells, Cultured , Lectins/metabolism , Neutrophils/metabolism , Zebrafish , Zebrafish Proteins/metabolism
7.
Phys Biol ; 17(6): 065013, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33210617

ABSTRACT

Modern single cell experiments have revealed unexpected heterogeneity in apparently functionally 'pure' cell populations. However, we are still lacking a conceptual framework to understand this heterogeneity. Here, we propose that cellular memories-changes in the molecular status of a cell in response to a stimulus, that modify the ability of the cell to respond to future stimuli-are an essential ingredient in any such theory. We illustrate this idea by considering a simple age-structured model of stem cell proliferation that takes account of mitotic memories. Using this model we argue that asynchronous mitosis generates heterogeneity that is central to stem cell population function. This model naturally explains why stem cell numbers increase through life, yet regenerative potency simultaneously declines.


Subject(s)
Mitosis , Stem Cells/physiology , Models, Biological
8.
Rinsho Ketsueki ; 61(9): 1064-1070, 2020.
Article in Japanese | MEDLINE | ID: mdl-33162500

ABSTRACT

Expansion of stem cell numbers without reduction in their regenerative potential is crucial for therapeutic applications. However, the repeated cell divisions and aging impair stem cell function. We found that Pot1a, a component of the shelterin that protects telomeres, involves the maintenance of hematopoietic stem cell (HSC) activity during aging. Pot1a maintained the self-renewal activity of HSCs through the prevention of DNA damage responses in HSCs and suppression of the production of reactive oxygen species. Furthermore, the exogenous Pot1a expanded the HSC number and rejuvenated aged HSCs function upon ex vivo culture. Consistent with these results, treatment with exogenous human POT1 protein maintains human HSC activity in culture. Collectively, these results show that Pot1a or POT1 sustains HSC activity and can be used to expand HSC numbers ex vivo.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Aging , Cell Division , Humans , Maintenance , Shelterin Complex , Telomere , Telomere-Binding Proteins
9.
Blood ; 128(5): 638-49, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27301860

ABSTRACT

Setdb1, also known as Eset, is a methyltransferase that catalyzes trimethylation of H3K9 (H3K9me3) and plays an essential role in the silencing of endogenous retroviral elements (ERVs) in the developing embryo and embryonic stem cells (ESCs). Its role in somatic stem cells, however, remains unclear because of the early death of Setdb1-deficient embryos. We demonstrate here that Setdb1 is the first H3K9 methyltransferase shown to be essential for the maintenance of hematopoietic stem and progenitor cells (HSPCs) in mice. The deletion of Setdb1 caused the rapid depletion of hematopoietic stem and progenitor cells (HSPCs), as well as leukemic stem cells. In contrast to ESCs, ERVs were largely repressed in Setdb1-deficient HSPCs. A list of nonhematopoietic genes was instead ectopically activated in HSPCs after reductions in H3K9me3 levels, including key gluconeogenic enzyme genes fructose-1,6-bisphosphatase 1 (Fbp1) and Fbp2 The ectopic activation of gluconeogenic enzymes antagonized glycolysis and impaired ATP production, resulting in a compromised repopulating capacity of HSPCs. Our results demonstrate that Setdb1 maintains HSPCs by restricting the ectopic activation of nonhematopoietic genes detrimental to their function and uncover that the gluconeogenic pathway is one of the critical targets of Setdb1 in HSPCs.


Subject(s)
Gene Expression Regulation , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Animals , Bone Marrow/pathology , Endogenous Retroviruses/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Gene Deletion , Gene Silencing , Gluconeogenesis/genetics , Homeostasis/genetics , Leukemia/genetics , Leukemia/pathology , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
10.
Rinsho Ketsueki ; 58(8): 942-949, 2017.
Article in Japanese | MEDLINE | ID: mdl-28883279

ABSTRACT

Repeated cell divisions induce DNA damage accumulation, which impairs stem cell function during aging. However, the general molecular mechanisms by which this occurs remain unclear. Herein, we show that the expression of protection of telomeres 1a (Pot1a), a component of shelterin, is crucial for prevention of telomeric DNA damage response (DDR) and maintenance of hematopoietic stem cell (HSC) activity during aging. We observed that HSCs express high levels of Pot1a during development, and this expression declines with aging. Knockdown of Pot1a induced an age-related phenotype, characterized by increased telomeric DDR and reduced long-term reconstitution activity. In contrast, treatment with exogenous Pot1a protein prevented telomeric DDR, which decreased stem cell activity and partially rejuvenated HSC activity. These results highlight a general, reversible mechanism by which aging compromises mammalian stem cell activity, with widespread implications for regenerative medicine.


Subject(s)
Cellular Senescence , DNA-Binding Proteins/genetics , Hematopoietic Stem Cells/metabolism , Telomere/genetics , Aging , Animals , DNA Damage , DNA-Binding Proteins/metabolism , Humans , Telomere/metabolism
11.
Stem Cells ; 33(2): 479-90, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25329760

ABSTRACT

The transcription factor c-Myb was originally identified as a transforming oncoprotein encoded by two avian leukemia viruses. Subsequently, through the generation of mouse models that affect its expression, c-Myb has been shown to be a key regulator of hematopoiesis, including having critical roles in hematopoietic stem cells (HSCs). The precise function of c-Myb in HSCs although remains unclear. We have generated a novel c-myb allele in mice that allows direct observation of c-Myb protein levels in single cells. Using this reporter line we demonstrate that subtypes of HSCs can be isolated based upon their respective c-Myb protein expression levels. HSCs expressing low levels of c-Myb protein (c-Myb(low) HSC) appear to represent the most immature, dormant HSCs and they are a predominant component of HSCs that retain bromodeoxyuridine labeling. Hematopoietic stress, induced by 5-fluorouracil ablation, revealed that in this circumstance c-Myb-expressing cells become critical for multilineage repopulation. The discrimination of HSC subpopulations based on c-Myb protein levels is not reflected in the levels of c-myb mRNA, there being no more than a 1.3-fold difference comparing c-Myb(low) and c-Myb(high) HSCs. This illustrates how essential it is to include protein studies when aiming to understand the regulatory networks that control stem cell behavior.


Subject(s)
Gene Expression Regulation/physiology , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Proto-Oncogene Proteins c-myb/biosynthesis , Animals , Genes, Reporter , Mice , Proto-Oncogene Proteins c-myb/genetics
12.
Rinsho Ketsueki ; 57(10): 1845-1851, 2016.
Article in Japanese | MEDLINE | ID: mdl-27725579

ABSTRACT

Hematopoietic stem cells (HSCs) are characterized by their ability to self-renew and differentiate into all blood lineage cells. The fate decisions of HSCs (self-renewal versus differentiation) are made through the process of cell division and are often compared to "birth" and "death". Stem cells give rise to undifferentiated stem cells (birth) or differentiate into progenitor cells (death). This process is regulated by asymmetric/symmetric divisions of HSCs. It has been proposed that fate determination occurs as a stochastic process and that individual stem cell dynamics are randomly regulated. The behavior of HSCs is known to be regulated by the cell intrinsic factor and extrinsic (microenvironmental) stimuli. Therefore, it is possible that the signals from a specific microenvironment (niche) have the potential to control or modulate stem cell dynamics. This review focuses on the functions of the HSC niche and the application of single cell analysis for understanding the mechanisms underlying the HSC decision-making process.


Subject(s)
Cell Differentiation , Cell Self Renewal , Hematopoietic Stem Cells/cytology , Stem Cell Niche , Animals , Cell Division , Cell Lineage , Humans
13.
Blood ; 121(11): 1995-2007, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23315170

ABSTRACT

Prostaglandin E(2) (PGE(2)) regulates hematopoietic stem/progenitor cell (HSPC) activity. However, the receptor(s) responsible for PGE(2) signaling remains unclear. Here, we identified EP4 as a receptor activated by PGE(2) to regulate HSPCs. Knockdown of Ep4 in HSPCs reduced long-term reconstitution capacity, whereas an EP4-selective agonist induced phosphorylation of GSK3ß and ß-catenin and enhanced long-term reconstitution capacity. Next, we analyzed the niche-mediated effect of PGE(2) in HSPC regulation. Bone marrow mesenchymal progenitor cells (MPCs) expressed EP receptors, and stimulation of MPCs with PGE(2) significantly increased their ability to support HSPC colony formation. Among the EP receptor agonists, only an EP4 agonist facilitated the formation of HSPC colonies after the coculture with MPCs. PGE(2) up-regulated the expression of cytokine-, cell adhesion-, extracellular matrix-, and protease-related genes in MPCs. We also examined the function of PGE(2)/EP4 signaling in the recovery of the HSPCs after myelosuppression. The administration of PGE(2) or an EP4 agonist facilitated the recovery of HSPCs from 5-fluorouracil (5-FU)-induced myelosuppression, indicating a role for PGE(2)/EP4 signaling in this process. Altogether, these data suggest that EP4 is a key receptor for PGE(2)-mediated direct and indirect regulation of HSPCs.


Subject(s)
Dinoprostone/pharmacology , Hematopoietic Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Receptors, Prostaglandin E, EP4 Subtype/physiology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Cells, Cultured , Dinoprostone/biosynthesis , Gene Expression Regulation/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , RNA, Small Interfering/pharmacology , Receptors, Prostaglandin E, EP2 Subtype/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/physiology , Receptors, Prostaglandin E, EP4 Subtype/genetics , Receptors, Prostaglandin E, EP4 Subtype/metabolism
14.
Biochem Biophys Res Commun ; 430(1): 20-5, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23149415

ABSTRACT

Angiopoietin-1 (Angpt1) signaling via the Tie2 receptor regulates vascular and hematopoietic systems. To investigate the role of Angpt1-Tie2 signaling in hematopoiesis, we prepared conditionally inducible transgenic (Tg) mice expressing a genetically engineered Angpt1, cartridge oligomeric matrix protein (COMP)-Angpt1. The effects of COMP-Angpt1 overexpression in osteoblasts on hematopoiesis were then investigated by crossing COMP-Angpt1 Tg mice with Col1a1-Cre Tg mice. Interestingly, peripheral blood analyses showed that 4 week (wk)-old (but not 8 wk-old) Col1a1-Cre+/COMP-Angpt1+ mice had a lower percentage of circulating B cells and a higher percentage of myeloid cells than Col1a1-Cre-/COMP-Angpt1+ (control) mice. Although there were no significant differences in the immunophenotypic hematopoietic stem and progenitor cell (HSPC) populations between Col1a1-Cre+/COMP-Angpt1+ and control mice, lineage(-)Sca-1(+)c-Kit(+) (LSK) cells isolated from 8 wk-old Col1a1-Cre+/COMP-Angpt1+ mice showed better long-term bone marrow reconstitution ability. These data indicate that Angpt1-Tie2 signaling affects the differentiation capacity of hematopoietic lineages during development and increases the stem cell activity of HSCs.


Subject(s)
Angiopoietin-1/metabolism , Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells/cytology , Receptor Protein-Tyrosine Kinases/metabolism , Angiopoietin-1/genetics , Animals , Blood Vessels/abnormalities , Bone Marrow Cells/cytology , Cell Separation , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Embryo Loss/genetics , Embryo Loss/metabolism , Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Matrilin Proteins , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteoblasts/metabolism , Receptor, TIE-2 , Signal Transduction
15.
Biochem Biophys Res Commun ; 441(1): 196-201, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24140061

ABSTRACT

Nucleostemin is a nucleolar protein known to play a variety of roles in cell-cycle progression, apoptosis inhibition, and DNA damage protection in embryonic stem cells and tissue stem cells. However, the role of nucleostemin in hematopoietic stem cells (HSCs) is yet to be determined. Here, we identified an indispensable role of nucleostemin in mouse HSCs. Depletion of nucleostemin using short hairpin RNA strikingly impaired the self-renewal activity of HSCs both in vitro and in vivo. Consistently, nucleostemin depletion triggered apoptosis rather than cell-cycle arrest in HSCs. Furthermore, DNA damage accumulated during cultivation upon depletion of nucleostemin. The impaired self-renewal activity of HSCs induced by nucleostemin depletion was partially rescued by p53 deficiency but not by p16(Ink4a) or p19(Arf) deficiency. Taken together, our study demonstrates that nucleostemin protects HSCs from DNA damage accumulation and is required for the maintenance of HSCs.


Subject(s)
Carrier Proteins/metabolism , Genomic Instability , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Nuclear Proteins/metabolism , Animals , Apoptosis , Bone Marrow Cells/metabolism , Cell Cycle , Colony-Forming Units Assay , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p19/metabolism , DNA Damage , GTP-Binding Proteins , Mice , Mice, Inbred C57BL , RNA, Small Interfering/metabolism , RNA-Binding Proteins , Tumor Suppressor Protein p53/metabolism
16.
Blood ; 117(16): 4169-80, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21297001

ABSTRACT

Telomerase reverse transcriptase (TERT) contributes to the prevention of aging by a largely unknown mechanism that is unrelated to telomere lengthening. The current study used ataxia-telangiectasia mutated (ATM) and TERT doubly deficient mice to evaluate the contributions of 2 aging-regulating molecules, TERT and ATM, to the aging process. ATM and TERT doubly deficient mice demonstrated increased progression of aging and had shorter lifespans than ATM-null mice, while TERT alone was insufficient to affect lifespan. ATM-TERT doubly null mice show in vivo senescence, especially in hematopoietic tissues, that was dependent on p16(INK4a) and p19(ARF), but not on p21. As their HSCs show decreased stem cell activities, accelerated aging seen in these mice has been attributed to impaired stem cell function. TERT-deficient HSCs are characterized by reactive oxygen species (ROS) fragility, which has been suggested to cause stem cell impairment during aging, and apoptotic HSCs are markedly increased in these mice. p38MAPK activation was indicated to be partially involved in ROS-induced apoptosis in TERT-null HSCs, and BCL-2 is suggested to provide a part of the protective mechanisms of HSCs by TERT. The current study demonstrates that TERT mitigates aging by protecting HSCs under stressful conditions through telomere length-independent mechanisms.


Subject(s)
Aging , Apoptosis , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Hematopoietic Stem Cells/cytology , Protein Serine-Threonine Kinases/genetics , Reactive Oxygen Species/metabolism , Telomerase/metabolism , Tumor Suppressor Proteins/genetics , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cellular Senescence , DNA-Binding Proteins/metabolism , Gene Deletion , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Telomerase/genetics , Telomere/metabolism , Tumor Suppressor Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Blood ; 118(13): 3613-21, 2011 Sep 29.
Article in English | MEDLINE | ID: mdl-21813452

ABSTRACT

Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent.


Subject(s)
Gene Dosage/physiology , Gene Duplication/physiology , Loss of Heterozygosity/physiology , Membrane Proteins/genetics , Myeloproliferative Disorders/genetics , fms-Like Tyrosine Kinase 3/physiology , Alleles , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Bone Marrow Cells/physiology , Cell Proliferation , Cells, Cultured , Gene Knock-In Techniques , Loss of Heterozygosity/genetics , Male , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Tandem Repeat Sequences/genetics , Tandem Repeat Sequences/physiology , fms-Like Tyrosine Kinase 3/metabolism
18.
Nat Med ; 12(4): 446-51, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16565722

ABSTRACT

Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.


Subject(s)
Cellular Senescence/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Buthionine Sulfoximine/pharmacology , Cell Culture Techniques , Cell Line , Coculture Techniques , Dose-Response Relationship, Drug , Enzyme Activation , Enzyme Inhibitors/pharmacology , Flow Cytometry , Free Radical Scavengers/pharmacology , Imidazoles/pharmacology , Immunohistochemistry , Mice , Mice, Congenic , Mice, Inbred C57BL , Oxidative Stress , Phosphorylation , Pyridines/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
19.
Masui ; 62(3): 322-5, 2013 Mar.
Article in Japanese | MEDLINE | ID: mdl-23544336

ABSTRACT

The transversus abdominis plane (TAP) block is a newly described technique introducing a local anesthetic agent between the internal oblique and the transversus abdominis muscles of the abdominal wall, which is safer and more reliable analgesia in recent years by ultrasound technique. We report the perioperative management of transversus abdominis plane block with catheterization for a patient with severe cardiac dysfunction and chronic kidney failure, who underwent bilateral inguinal hernioplasty. A bilateral TAP block was first performed with 0.5% ropivacaine 20 ml under ultrasonographic visualization on right side, and after sixty-minutes the other side injection was performed through the indwelling catheter. During the operation, the patient received a target-controlled infusion of 0.4-0.6 microg x ml(-1) propofol. The perioperative courses were uneventful and there was no adverse effect including central nervous system (CNS) symptoms.


Subject(s)
Heart Diseases/complications , Hernia, Inguinal/surgery , Kidney Failure, Chronic/complications , Nerve Block/methods , Abdominal Muscles , Aged, 80 and over , Catheterization , Humans , Male
20.
Elife ; 122023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266576

ABSTRACT

Polycomb repressive complex (PRC) 1 regulates stem cell fate by mediating mono-ubiquitination of histone H2A at lysine 119. While canonical PRC1 is critical for hematopoietic stem and progenitor cell (HSPC) maintenance, the role of non-canonical PRC1 in hematopoiesis remains elusive. PRC1.1, a non-canonical PRC1, consists of PCGF1, RING1B, KDM2B, and BCOR. We recently showed that PRC1.1 insufficiency induced by the loss of PCGF1 or BCOR causes myeloid-biased hematopoiesis and promotes transformation of hematopoietic cells in mice. Here we show that PRC1.1 serves as an epigenetic switch that coordinates homeostatic and emergency hematopoiesis. PRC1.1 maintains balanced output of steady-state hematopoiesis by restricting C/EBPα-dependent precocious myeloid differentiation of HSPCs and the HOXA9- and ß-catenin-driven self-renewing network in myeloid progenitors. Upon regeneration, PRC1.1 is transiently inhibited to facilitate formation of granulocyte-macrophage progenitor (GMP) clusters, thereby promoting emergency myelopoiesis. Moreover, constitutive inactivation of PRC1.1 results in unchecked expansion of GMPs and eventual transformation. Collectively, our results define PRC1.1 as a novel critical regulator of emergency myelopoiesis, dysregulation of which leads to myeloid transformation.


Subject(s)
Myelopoiesis , Polycomb Repressive Complex 1 , Animals , Mice , Polycomb Repressive Complex 1/metabolism , Myelopoiesis/genetics , Histones , Cell Differentiation/physiology , Hematopoietic Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL