Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Alzheimers Dement ; 19 Suppl 14: e079861, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38687559

ABSTRACT

BACKGROUND: The CSF amyloid to tau ratio can isolate cognitively healthy participants into normal Aß42/tau (CH-NAT) or a pathological Aß42/tau (CH-PAT) with a low or high risk of cognitive decline, respectively. We aim to determine if plasma Aß42/tau ratios can differentiate CH-NAT from CH-PAT participants. METHOD: Study participants (> 65 years of age) were recruited, and demographic, neurological, and neuropsychological data were obtained in an ongoing HMRI Brain Aging study. Overnight fasting plasma and CSF were collected within a month of examination, and the levels of Aß38, Aß40, Aß42 (MSD 6E10 kit), and total tau were quantified using the MSD electrochemiluminescence platform. Differences in fluid biomarker levels and the plasma ratios (n = 55) and CSF ratios (Aß42/Aß40, n = 41, Aß42/tau, n = 55) were determined using nonparametric student t-test and correlations using a Spearman test. RESULT: Aß40 and Aß42 levels were higher (15-18-fold, and 10-14-fold, respectively), while tau levels are 8-13-fold higher in CSF than in plasma. Plasma and CSF Aß40 were not distinct in CH-NAT compared with CH-PAT. In contrast, Aß42 levels were 30.9% lower in CH-PAT (16.3 ± 18.3 pg/ml) compared with CH-NAT plasma (23.6 ± 26.4 pg/mL) (p < 0.05). CSF Aß42 levels in CH-PAT (171.6 ± 124.6 pg/mL) were lower by 47.6% compared with CH-NAT (327.6 ± 182.6 pg/ml) (p < 0.0001). The Aß42/Aß40 ratio was significantly lower in both plasma and CSF (Table 1A). Similarly, the Aß42/tau ratio was significantly lower in plasma and CSF (Table 1B). Individually, plasma levels of Aß42 and tau did not correlate with CSF levels. However, the ratio of Aß42 to total tau in plasma significantly correlated with the CSF ratios (Spearman r = 0.36, p = 0.0071). Finally, CSF Aß42/Aß40 ratio correlated with Aß42/tau ratio for all samples, CH (n = 100) and MCI (n = 35) (Fig. 1). CONCLUSION: While not as robust as CSF ratios, plasma Aß42/Aß40 and Aß42/tau ratios can isolate cognitively healthy participants with lower risk from participants with a higher risk of cognitive decline. Thus, plasma represents a less invasive medium for the biomarker classification of aging participants.


Subject(s)
Amyloid beta-Peptides , Biomarkers , Peptide Fragments , tau Proteins , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Male , Female , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Aged , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Neuropsychological Tests
2.
Headache ; 61(3): 536-545, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33724462

ABSTRACT

OBJECTIVE: Our objective is to explore whether blood-cerebrospinal fluid (CSF) barrier biomarkers differ in episodic migraine (EM) or chronic migraine (CM) from controls. BACKGROUND: Reports of blood-brain barrier and blood-cerebrospinal fluid barrier (BCSFB) disruption in migraine vary. Our hypothesis is that investigation of biomarkers associated with blood, CSF, brain, cell adhesion, and inflammation will help elucidate migraine pathophysiology. METHODS: We recruited 14 control volunteers without headache disorders and 42 individuals with EM or CM as classified using the International Classification of Headache Disorders, 3rd edition, criteria in a cross-sectional study located at our Pasadena and Stanford headache research centers in California. Blood and lumbar CSF samples were collected once from those diagnosed with CM or those with EM during two states: during a typical migraine, before rescue therapy, with at least 6/10 level of pain (ictal); and when migraine free for at least 48 h (interictal). The average number of headaches per month over the previous year was estimated by those with EM; this enabled comparison of biomarker changes between controls and three headache frequency groups: <2 per month, 2-14 per month, and CM. Blood and CSF biomarkers were determined using antibody-based methods. RESULTS: Antimigraine medication was only taken by the EM and CM groups. Compared to controls, the migraine group had significantly higher mean CSF-blood quotients of albumin (Qalb : mean ± standard deviation (SD): 5.6 ± 2.3 vs. 4.1 ± 1.9) and fibrinogen (Qfib mean ± SD: 1615 ± 99.0 vs. 86.1 ± 55.0). Mean CSF but not plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were significantly higher in those with more frequent migraine: (4.5 ng/mL ± 1.1 in those with <2 headache days a month; 5.5 ± 1.9 with 2-14 days a month; and 7.1 ± 2.9 in CM), while the Qfib ratio was inversely related to headache frequency. We did not find any difference in individuals with EM or CM from controls for CSF cell count, total protein, matrix metalloproteinase-9, soluble platelet-derived growth factor receptor ß, tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-6, IL-8, IL-10, or C-reactive protein. CONCLUSIONS: The higher Qalb and Qfib ratios may indicate that the transport of these blood-derived proteins is disturbed at the BCSFB in persons with migraine. These changes most likely occur at the choroid plexus epithelium, as there are no signs of typical endothelial barrier disruption. The most striking finding in this hypothesis-generating study of migraine pathophysiology is that sVCAM-1 levels in CSF may be a biomarker of higher frequency of migraine and CM. An effect from migraine medications cannot be excluded, but there is no known mechanism to suggest they have a role in altering the CSF biomarkers.


Subject(s)
Blood-Brain Barrier , Fibrinogen/cerebrospinal fluid , Inflammation , Migraine Disorders , Vascular Cell Adhesion Molecule-1/cerebrospinal fluid , Adult , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cross-Sectional Studies , Female , Humans , Inflammation/blood , Inflammation/cerebrospinal fluid , Inflammation/immunology , Male , Middle Aged , Migraine Disorders/blood , Migraine Disorders/cerebrospinal fluid , Migraine Disorders/physiopathology
3.
Alzheimers Dement ; 17(9): 1528-1553, 2021 09.
Article in English | MEDLINE | ID: mdl-33860614

ABSTRACT

The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.


Subject(s)
Alzheimer Disease/physiopathology , Clinical Trials as Topic , Electroencephalography/standards , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Disease Progression , Humans
4.
Headache ; 56(4): 688-98, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27016121

ABSTRACT

OBJECTIVE: We investigated whether dietary sodium intake from respondents of a national cross-sectional nutritional study differed by history of migraine or severe headaches. BACKGROUND: Several lines of evidence support a disruption of sodium homeostasis in migraine. DESIGN: Our analysis population was 8819 adults in the 1999-2004 National Health and Nutrition Examination Survey (NHANES) with reliable data on diet and headache history. We classified respondents who reported a history of migraine or severe headaches as having probable history of migraine. To reduce the diagnostic conflict from medication overuse headache, we excluded respondents who reported taking analgesic medications. Dietary sodium intake was measured using validated estimates of self-reported total grams of daily sodium consumption and was analyzed as the residual value from the linear regression of total grams of sodium on total calories. Multivariable logistic regression that accounted for the stratified, multistage probability cluster sampling design of NHANES was used to analyze the relationship between migraine and dietary sodium. RESULTS: Odds of probable migraine history decreased with increasing dietary sodium intake (odds ratio = 0.93, 95% confidence interval = 0.87, 1.00, P = .0455). This relationship was maintained after adjusting for age, sex, and body mass index (BMI) with slightly reduced significance (P = .0505). In women, this inverse relationship was limited to those with lower BMI (P = .007), while in men the relationship did not differ by BMI. We likely excluded some migraineurs by omitting frequent analgesic users; however, a sensitivity analysis suggested little effect from this exclusion. CONCLUSIONS: This study is the first evidence of an inverse relationship between migraine and dietary sodium intake. These results are consistent with altered sodium homeostasis in migraine and our hypothesis that dietary sodium may affect brain extracellular fluid sodium concentrations and neuronal excitability.


Subject(s)
Migraine Disorders/epidemiology , Sodium, Dietary , Adolescent , Adult , Aged , Cross-Sectional Studies , Female , Headache/epidemiology , Humans , Male , Middle Aged , Nutrition Surveys , Young Adult
5.
Geroscience ; 46(2): 2777-2786, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37817004

ABSTRACT

Early screening to determine patient risk of developing Alzheimer's will allow better interventions and planning but necessitates accessible methods such as behavioral biomarkers. Previously, we showed that cognitively healthy older individuals whose cerebrospinal fluid amyloid/tau ratio indicates high risk of cognitive decline experienced implicit interference during a high-effort task, signaling early changes in attention. To further investigate attention's effect on implicit interference, we analyzed two experiments completed sequentially by the same high- and low-risk individuals. We hypothesized that if attention modulates interference, practice would affect the influence of implicit distractors. Indeed, while both groups experienced a strong practice effect, the association between practice and interference effects diverged between groups: stronger practice effects correlated with more implicit interference in high-risk participants, but less interference in low-risk individuals. Furthermore, low-risk individuals showed a positive correlation between implicit interference and EEG low-range alpha event-related desynchronization when switching from high- to low-load tasks. This suggests that lower attention on the task was correlated with stronger interference, a typical phenomenon in the younger population. These results demonstrate how attention impacts implicit interference and highlight early differences in perception between high- and low-risk individuals.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , tau Proteins , Amyloid beta-Peptides
6.
Cells ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891102

ABSTRACT

Electroencephalogram (EEG) studies have suggested compensatory brain overactivation in cognitively healthy (CH) older adults with pathological beta-amyloid(Aß42)/tau ratios during working memory and interference processing. However, the association between glutamatergic metabolites and brain activation proxied by EEG signals has not been thoroughly investigated. We aim to determine the involvement of these metabolites in EEG signaling. We focused on CH older adults classified under (1) normal CSF Aß42/tau ratios (CH-NATs) and (2) pathological Aß42/tau ratios (CH-PATs). We measured plasma glutamine, glutamate, pyroglutamate, and γ-aminobutyric acid concentrations using tandem mass spectrometry and conducted a correlational analysis with alpha frequency event-related desynchronization (ERD). Under the N-back working memory paradigm, CH-NATs presented negative correlations (r = ~-0.74--0.96, p = 0.0001-0.0414) between pyroglutamate and alpha ERD but positive correlations (r = ~0.82-0.95, p = 0.0003-0.0119) between glutamine and alpha ERD. Under Stroop interference testing, CH-NATs generated negative correlations between glutamine and left temporal alpha ERD (r = -0.96, p = 0.037 and r = -0.97, p = 0.027). Our study demonstrated that glutamine and pyroglutamate levels were associated with EEG activity only in CH-NATs. These results suggest cognitively healthy adults with amyloid/tau pathology experience subtle metabolic dysfunction that may influence EEG signaling during cognitive challenge. A longitudinal follow-up study with a larger sample size is needed to validate these pilot studies.


Subject(s)
Alzheimer Disease , Cognition , Glutamic Acid , Memory, Short-Term , Humans , Alzheimer Disease/blood , Alzheimer Disease/physiopathology , Memory, Short-Term/physiology , Female , Male , Aged , Cognition/physiology , Glutamic Acid/blood , Glutamic Acid/metabolism , Electroencephalography , Middle Aged , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/metabolism , tau Proteins/blood , tau Proteins/metabolism
7.
Invest Ophthalmol Vis Sci ; 65(1): 47, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38294804

ABSTRACT

Purpose: To compare optical coherence tomography angiography (OCTA) retina metrics between cognitively healthy subjects with pathological versus normal cerebrospinal fluid (CSF) Aß42/tau ratios. Methods: Swept-source OCTA scans were collected using the Zeiss PLEX Elite 9000 and analyzed on 23 cognitively healthy (CH) subjects who had previously undergone CSF analysis. Thirteen subjects had a pathological Aß42/tau (PAT) ratio of <2.7132, indicative of presymptomatic Alzheimer's disease (AD), and 10 had a normal Aß42/tau (NAT) ratio of ≥2.7132. OCTA en face images of the superficial vascular complex (SVC) and deep vascular complex were binarized and skeletonized to quantify the perfusion density (PD), vessel length density (VLD), and fractal dimension (FrD). The foveal avascular zone (FAZ) area was calculated using the SVC slab. Choriocapillaris flow deficits (CCFDs) were computed from the en face OCTA slab of the CC. The above parameters were compared between CH-PATs and CH-NATs. Results: Compared to CH-NATs, CH-PATs showed significantly decreased PD, VLD, and FrD in the SVC, with a significantly increased FAZ area and CCFDs. Conclusions: Swept-source OCTA analysis of the SVC and CC suggests a significant vascular loss at the CH stage of pre-AD that might be an indicator of a neurodegenerative process initiated by the impaired clearance of Aß42 in the blood vessel wall and by phosphorylated tau accumulation in the perivascular spaces, a process that most likely mirrors that in the brain. If confirmed in larger longitudinal studies, OCTA retinal and inner choroidal metrics may be important biomarkers for assessing presymptomatic AD.


Subject(s)
Alzheimer Disease , Macula Lutea , Humans , Alzheimer Disease/diagnostic imaging , Angiography , Choroid , Retina/diagnostic imaging , Tomography, Optical Coherence , Cerebrospinal Fluid , Amyloidogenic Proteins , Neurodegenerative Diseases
8.
J Lipid Res ; 54(10): 2884-97, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23868911

ABSTRACT

Our aim is to study selected cerebrospinal fluid (CSF) glycerophospholipids (GP) that are important in brain pathophysiology. We recruited cognitively healthy (CH), minimally cognitively impaired (MCI), and late onset Alzheimer's disease (LOAD) study participants and collected their CSF. After fractionation into nanometer particles (NP) and supernatant fluids (SF), we studied the lipid composition of these compartments. LC-MS/MS studies reveal that both CSF fractions from CH subjects have N-acyl phosphatidylethanolamine, 1-radyl-2-acyl-sn-glycerophosphoethanolamine (PE), 1-radyl-2-acyl-sn-glycerophosphocholine (PC), 1,2-diacyl-sn-glycerophosphoserine (PS), platelet-activating factor-like lipids, and lysophosphatidylcholine (LPC). In the NP fraction, GPs are enriched with a mixture of saturated, monounsaturated, and polyunsaturated fatty acid species, while PE and PS in the SF fractions are enriched with PUFA-containing molecular species. PC, PE, and PS levels in CSF fractions decrease progressively in participants from CH to MCI, and then to LOAD. Whereas most PC species decrease equally in LOAD, plasmalogen species account for most of the decrease in PE. A significant increase in the LPC-to-PC ratio and PLA2 activity accompanies the GP decrease in LOAD. These studies reveal that CSF supernatant fluid and nanometer particles have different GP composition, and that PLA2 activity accounts for altered GPs in these fractions as neurodegeneration progresses.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Glycerophospholipids/cerebrospinal fluid , Phospholipases A2/cerebrospinal fluid , Aged , Aged, 80 and over , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Female , Glycerophospholipids/isolation & purification , Humans , Lipid Metabolism , Male , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
9.
bioRxiv ; 2023 May 17.
Article in English | MEDLINE | ID: mdl-37292951

ABSTRACT

Early screening to determine patient risk of developing Alzheimer's will allow better interventions and planning but necessitates accessible methods such as behavioral biomarkers. Previously, we showed that cognitively healthy older individuals whose cerebrospinal fluid amyloid / tau ratio indicates high risk of cognitive decline experienced implicit interference during a high-effort task, signaling early changes in attention. To further investigate attention's effect on implicit interference, we analyzed two experiments completed sequentially by the same high- and low-risk individuals. We hypothesized that if attention modulates interference, practice would affect the influence of implicit distractors. Indeed, while both groups experienced a strong practice effect, the association between practice and interference effects diverged between groups: stronger practice effects correlated with more implicit interference in high-risk participants, but less interference in low-risk individuals. Furthermore, low-risk individuals showed a positive correlation between implicit interference and EEG low-range alpha event-related desynchronization when switching from high- to low-load tasks. These results demonstrate how attention impacts implicit interference and highlight early differences in cognition between high- and low-risk individuals.

10.
Article in English | MEDLINE | ID: mdl-37587981

ABSTRACT

Introduction: Resting heart rate (HR) and heart rate variability (HRV) have been linked with cognition in the general population and in older individuals. The knowledge of this aspect of heart-brain relationship is relatively absent in older individuals with early Alzheimer's disease (AD) pathology. This study explores relationships of the HR, HRV, and cognition in cognitively healthy individuals with pathological amyloid/tau ratio (CH-PATs) in cerebral spinal fluid (CSF) compared to those with normal ratio (CH-NATs). Methods: We examined therelationshipsbetween1) resting HR and Mini-Mental State Examination (MMSE); 2) resting HR and brain processing during Stroop interference; and 3) resting vagally mediated HRV (vmHRV) and task switching performance. Results: Our studies showed that compared to CH-NATs, those CH-PATs with higher resting HR presented with lower MMSE, and less brain activation during interference processing. In addition, resting vmHRV was significantly correlated with task switching accuracy in CH-NATs, but not in CH-PATs. Discussion: Thesethreedifferenttestsindicatedysfunctionalheart-brainconnections in CH-PATs, suggesting a potential cardio-cerebral dysfunctional integration.

11.
Front Neurosci ; 17: 1055445, 2023.
Article in English | MEDLINE | ID: mdl-36937689

ABSTRACT

The heart and brain have bi-directional influences on each other, including autonomic regulation and hemodynamic connections. Heart rate variability (HRV) measures variation in beat-to-beat intervals. New findings about disorganized sinus rhythm (erratic rhythm, quantified as heart rate fragmentation, HRF) are discussed and suggest overestimation of autonomic activities in HRV changes, especially during aging or cardiovascular events. When excluding HRF, HRV is regulated via the central autonomic network (CAN). HRV acts as a proxy of autonomic activity and is associated with executive functions, decision-making, and emotional regulation in our health and wellbeing. Abnormal changes of HRV (e.g., decreased vagal functioning) are observed in various neurological conditions including mild cognitive impairments, dementia, mild traumatic brain injury, migraine, COVID-19, stroke, epilepsy, and psychological conditions (e.g., anxiety, stress, and schizophrenia). Efforts are needed to improve the dynamic and intriguing heart-brain interactions.

12.
Alzheimers Dement (Amst) ; 14(1): e12340, 2022.
Article in English | MEDLINE | ID: mdl-36187196

ABSTRACT

Introduction: Abnormal cerebrospinal fluid amyloid beta (Aß)42 and tau levels have been revealed decades before symptoms onset in Alzheimer's disease (AD); however, the examination is usually invasive and inaccessible to most people. We thus aimed to develop a non-invasive behavioral test that targets early potential cognitive changes to gauge cognitive decline. Specifically, we hypothesized that older cognitive healthy participants would exhibit comparable performance when the task was explicit and relied on conscious cognition. However, when the task was implicit, the performance of participants at high and low risks for AD would bifurcate. That is, early changes in unconscious cognition could be linked to cognitive health. Methods: We measured implicit interference elicited by an imperceptible distractor in cognitively healthy elderly participants with normal (low risk) and pathological (high risk) Aß42/total tau ratio. Participants were required to perform a Stroop task (word-naming or color-naming on an ink-semantics inconsistent word) with a visually masked distractor presented prior to the target task. Results: We found that, under a high-effort task (i.e., color-naming in the Stroop task), high-risk participants suffered interference when the imperceptible distractor and the subsequent target were incongruent in the responses they triggered. Their reaction times were slowed down by approximately 4%. This implicit interference was not found in the low-risk participants. Discussion: These findings indicate that weakened inhibition of distracting implicit information can be a potential behavioral biomarker of early identification of AD pathology. Our study thus offers a new experimental paradigm to reveal early pathological aging by assessing how individuals respond to subperceptual threshold visual stimuli.

13.
Neurobiol Aging ; 112: 87-101, 2022 04.
Article in English | MEDLINE | ID: mdl-35066324

ABSTRACT

Synaptic dysfunctions precede cognitive decline in Alzheimer's disease by decades, affect executive functions, and can be detected by quantitative electroencephalography (qEEG). We used quantitative electroencephalography combined with Stroop testing to identify changes of inhibitory controls in cognitively healthy individuals with an abnormal versus normal ratio of cerebrospinal fluid (CSF) amyloid/total-tau. We studied two groups of participants (60-94 years) with either normal (CH-NAT or controls, n = 20) or abnormal (CH-PAT, n = 21) CSF amyloid/tau ratio. We compared: alpha event-related desynchronization (ERD), alpha spectral entropy (SE), and their relationships with estimated cognitive reserve. CH-PATs had more negative occipital alpha ERD, and higher frontal and occipital alpha SE during low load congruent trials, indicating hyperactivity. CH-PATs demonstrated fewer frontal SE changes with higher load, incongruent Stroop testing. Correlations of alpha ERD with estimated cognitive reserve were significant in CH-PATs but not in CH-NATs. These results suggested compensatory hyperactivity in CH-PATs compared to CH-NATs. We did not find differences in alpha ERD comparisons with individual CSF amyloid(A), p-tau(T), total-tau(N) biomarkers.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Humans , Peptide Fragments/cerebrospinal fluid , Stroop Test , tau Proteins/cerebrospinal fluid
14.
Psychophysiology ; 59(5): e13934, 2022 05.
Article in English | MEDLINE | ID: mdl-34460957

ABSTRACT

Cerebrospinal and structural-molecular neuroimaging in-vivo biomarkers are recommended for diagnostic purposes in Alzheimer's disease (AD) and other dementias; however, they do not explain the effects of AD neuropathology on neurophysiological mechanisms underpinning cognitive processes. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association reviewed the field literature and reached consensus on the event-related electroencephalographic oscillations (EROs) that show consistent abnormalities in patients with significant cognitive deficits due to Alzheimer's, Parkinson's (PD), Lewy body (LBD), and cerebrovascular diseases. Converging evidence from oddball paradigms showed that, as compared to cognitively unimpaired (CU) older adults, AD patients had lower amplitude in widespread delta (>4 Hz) and theta (4-7 Hz) phase-locked EROs as a function of disease severity. Similar effects were also observed in PD, LBD, and/or cerebrovascular cognitive impairment patients. Non-phase-locked alpha (8-12 Hz) and beta (13-30 Hz) oscillations were abnormally reduced (event-related desynchronization, ERD) in AD patients relative to CU. However, studies on patients with other dementias remain lacking. Delta and theta phase-locked EROs during oddball tasks may be useful neurophysiological biomarkers of cognitive systems at work in heuristic and intervention clinical trials performed in AD patients, but more research is needed regarding their potential role for other dementias.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Biomarkers , Electroencephalography/methods , Humans
15.
Cephalalgia ; 31(12): 1254-65, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21816771

ABSTRACT

INTRODUCTION: Increased lumbar cerebrospinal fluid (CSF) sodium has been reported during migraine. We used ultra-high field MRI to investigate cranial sodium in a rat migraine model, and simulated the effects of extracellular sodium on neuronal excitability. METHODS: Behavioral changes in the nitroglycerin (NTG) rat migraine model were determined from von Frey hair withdrawal response and photography. Central sensitization was measured by counting cFos-immunoreactive cells in the trigeminal nucleus caudalis (TNC). Sodium was quantified in vivo by ultra-high field sodium MRI at 21 Tesla. Effects of extracellular sodium on neuronal excitability were modeled using NEURON software. RESULTS: NTG decreased von Frey withdrawal threshold (p=0.0003), decreased eyelid vertical height:width ratio (p<0.0001), increased TNC cFos stain (p<0.0001), and increased sodium between 7.5 and 17% in brain, intracranial CSF, and vitreous humor (p<0.05). Simulated neurons exposed to higher sodium have more frequent and earlier spontaneous action potentials, and corresponding earlier sodium and potassium currents. CONCLUSIONS: In the rat migraine model, sodium rises to levels that increase neuronal excitability. We propose that rising sodium in CSF surrounding trigeminal nociceptors increases their excitability and causes pain and that rising sodium in vitreous humor increases retinal neuronal excitability and causes photosensitivity.


Subject(s)
Migraine Disorders/metabolism , Neurons/physiology , Sodium/metabolism , Action Potentials/physiology , Animals , Computer Simulation , Disease Models, Animal , Magnetic Resonance Imaging , Rats
17.
Front Mol Neurosci ; 14: 691733, 2021.
Article in English | MEDLINE | ID: mdl-34531722

ABSTRACT

BACKGROUND: Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. METHODS: We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. RESULTS: Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. CONCLUSIONS: Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.

18.
Int J Psychophysiol ; 170: 102-111, 2021 12.
Article in English | MEDLINE | ID: mdl-34666107

ABSTRACT

Electroencephalographic (EEG) alpha oscillations have been related to heart rate variability (HRV) and both change in Alzheimer's disease (AD). We explored if task switching reveals altered alpha power and HRV in cognitively healthy individuals with AD pathology in cerebrospinal fluid (CSF) and whether HRV improves the AD pathology classification by alpha power alone. We compared low and high alpha event-related desynchronization (ERD) and HRV parameters during task switch testing between two groups of cognitively healthy participants classified by CSF amyloid/tau ratio: normal (CH-NAT, n = 19) or pathological (CH-PAT, n = 27). For the task switching paradigm, participants were required to name the color or word for each colored word stimulus, with two sequential stimuli per trial. Trials include color (cC) or word (wW) repeats with low load repeating, and word (cW) or color switch (wC) for high load switching. HRV was assessed for RR interval, standard deviation of RR-intervals (SDNN) and root mean squared successive differences (RMSSD) in time domain, and low frequency (LF), high frequency (HF), and LF/HF ratio in frequency domain. Results showed that CH-PATs compared to CH-NATs presented: 1) increased (less negative) low alpha ERD during low load repeat trials and lower word switch cost (low alpha: p = 0.008, Cohen's d = -0.83, 95% confidence interval -1.44 to -0.22, and high alpha: p = 0.019, Cohen's d = -0.73, 95% confidence interval -1.34 to -0.13); 2) decreasing HRV from rest to task, suggesting hyper-activated sympatho-vagal responses. 3) CH-PATs classification by alpha ERD was improved by supplementing HRV signatures, supporting a potentially compromised brain-heart interoceptive regulation in CH-PATs. Further experiments are needed to validate these findings for clinical significance.


Subject(s)
Alzheimer Disease , Brain , Electroencephalography , Heart Rate , Humans , Pilot Projects
19.
Neurobiol Aging ; 103: 78-97, 2021 07.
Article in English | MEDLINE | ID: mdl-33845399

ABSTRACT

Vascular contribution to cognitive impairment (VCI) and dementia is related to etiologies that may affect the neurophysiological mechanisms regulating brain arousal and generating electroencephalographic (EEG) activity. A multidisciplinary expert panel reviewed the clinical literature and reached consensus about the EEG measures consistently found as abnormal in VCI patients with dementia. As compared to cognitively unimpaired individuals, those VCI patients showed (1) smaller amplitude of resting state alpha (8-12 Hz) rhythms dominant in posterior regions; (2) widespread increases in amplitude of delta (< 4 Hz) and theta (4-8 Hz) rhythms; and (3) delayed N200/P300 peak latencies in averaged event-related potentials, especially during the detection of auditory rare target stimuli requiring participants' responses in "oddball" paradigms. The expert panel formulated the following recommendations: (1) the above EEG measures are not specific for VCI and should not be used for its diagnosis; (2) they may be considered as "neural synchronization" biomarkers to enlighten the relationships between features of the VCI-related cerebrovascular lesions and abnormalities in neurophysiological brain mechanisms; and (3) they may be tested in future clinical trials as prognostic biomarkers and endpoints of interventions aimed at normalizing background brain excitability and vigilance in wakefulness.


Subject(s)
Brain/physiopathology , Cognitive Dysfunction/diagnosis , Dementia, Vascular/diagnosis , Electroencephalography/methods , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Dementia, Vascular/etiology , Dementia, Vascular/physiopathology , Evoked Potentials/physiology , Humans , Rest/physiology
20.
Headache ; 50(3): 459-78, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19845787

ABSTRACT

BACKGROUND: Cerebrospinal fluid sodium concentration ([Na(+)](csf)) increases during migraine, but the cause of the increase is not known. OBJECTIVE: Analyze biochemical pathways that influence [Na(+)](csf) to identify mechanisms that are consistent with migraine. METHOD: We reviewed sodium physiology and biochemistry publications for links to migraine and pain. RESULTS: Increased capillary endothelial cell (CEC) Na(+), K(+), -ATPase transporter (NKAT) activity is probably the primary cause of increased [Na(+)](csf). Physiological fluctuations of all NKAT regulators in blood, many known to be involved in migraine, are monitored by receptors on the luminal wall of brain CECs; signals are then transduced to their abluminal NKATs that alter brain extracellular sodium ([Na(+)](e)) and potassium ([K(+)](e)). CONCLUSIONS: We propose a theoretical mechanism for aura and migraine when NKAT activity shifts outside normal limits: (1) CEC NKAT activity below a lower limit increases [K(+)](e), facilitates cortical spreading depression, and causes aura; (2) CEC NKAT activity above an upper limit elevates [Na(+)](e), increases neuronal excitability, and causes migraine; (3) migraine-without-aura may arise from CEC NKAT over-activity without requiring a prior decrease in activity and its consequent spreading depression; (4) migraine triggers disturb, and treatments improve, CEC NKAT homeostasis; (5) CEC NKAT-induced regulation of neural and vasomotor excitability coordinates vascular and neuronal activities, and includes occasional pathology from CEC NKAT-induced apoptosis or cerebral infarction.


Subject(s)
Cerebral Arteries/metabolism , Cerebral Arteries/physiopathology , Endothelial Cells/metabolism , Migraine Disorders/metabolism , Migraine Disorders/physiopathology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Brain/blood supply , Brain/metabolism , Brain/physiopathology , Cerebrospinal Fluid/metabolism , Cortical Spreading Depression/physiology , Humans , Migraine Disorders/cerebrospinal fluid , Potassium/analysis , Potassium/cerebrospinal fluid , Sodium/analysis , Sodium/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL