ABSTRACT
There is an unmet clinical need for improved tissue and liquid biopsy tools for cancer detection. We investigated the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. Among traditional exosome markers, CD9, HSPA8, ALIX, and HSP90AB1 represent pan-EVP markers, while ACTB, MSN, and RAP1B are novel pan-EVP markers. To confirm that EVPs are ideal diagnostic tools, we analyzed proteomes of TE- (n = 151) and plasma-derived (n = 120) EVPs. Comparison of TE EVPs identified proteins (e.g., VCAN, TNC, and THBS2) that distinguish tumors from normal tissues with 90% sensitivity/94% specificity. Machine-learning classification of plasma-derived EVP cargo, including immunoglobulins, revealed 95% sensitivity/90% specificity in detecting cancer. Finally, we defined a panel of tumor-type-specific EVP proteins in TEs and plasma, which can classify tumors of unknown primary origin. Thus, EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type.
Subject(s)
Biomarkers, Tumor/metabolism , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Animals , Biomarkers, Tumor/blood , Cell Line , HSC70 Heat-Shock Proteins/metabolism , Humans , Machine Learning , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Neoplasms/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Sensitivity and Specificity , Tetraspanin 29/metabolism , rap GTP-Binding Proteins/metabolismABSTRACT
Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6ß4 and α6ß1 were associated with lung metastasis, while exosomal integrin αvß5 was linked to liver metastasis. Targeting the integrins α6ß4 and αvß5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.
Subject(s)
Brain/metabolism , Exosomes/metabolism , Integrins/metabolism , Liver/metabolism , Lung/metabolism , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Tropism , Animals , Biomarkers/metabolism , Brain/cytology , Cell Line, Tumor , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Genes, src , Humans , Integrin alpha6beta1/metabolism , Integrin alpha6beta4/antagonists & inhibitors , Integrin alpha6beta4/metabolism , Integrin beta Chains/metabolism , Integrin beta4/metabolism , Integrins/antagonists & inhibitors , Kupffer Cells/cytology , Kupffer Cells/metabolism , Liver/cytology , Lung/cytology , Mice , Mice, Inbred C57BL , Organ Specificity , Phosphorylation , Receptors, Vitronectin/antagonists & inhibitors , Receptors, Vitronectin/metabolism , S100 Proteins/geneticsABSTRACT
BACKGROUND: Childhood abuse and homelessness are independently associated with substance use. Though childhood abuse and homelessness are strongly correlated, research on the joint effect of exposure to both traumatic life events on substance use is limited. Objective: To estimate independent and joint effects of childhood abuse and homelessness on substance use risk during emerging adulthood and adulthood. Methods: Using the National Longitudinal Study of Adolescent to Adult Health (N = 12,288), we measured associations between exposure to physical or sexual abuse in childhood, homelessness in childhood or emerging adulthood, or exposure to both traumas and outcomes of binge drinking, marijuana use, cocaine use, methamphetamine use, and prescription opioid misuse during emerging adulthood (Wave III, ages 18-26 years) and adulthood (Wave IV, ages 24-32 years). Results: In adjusted analyses, exposure to childhood abuse alone, homelessness alone, and both childhood abuse and homelessness were significant correlates of most substance use indicators in emerging adulthood. Those jointly exposed to childhood abuse and homelessness had disproportionate risk of substance use, particularly use of cocaine (adjusted odds ratio (AOR)=4.25, 95% confidence interval (CI): 2.70, 6.71) and methamphetamine (AOR = 6.59, 95% CI: 3.87, 11.21). The independent and combined effects of abuse and homelessness generally persisted into adulthood though associations tended to weaken. Conclusions/Importance: Those with exposure to abuse, homelessness, and both adverse outcomes constitute a high-risk population for substance use. Addressing abuse and homelessness should be a component of preventing drug risk for screening, treatment, and prevention efforts.
Subject(s)
Child Abuse , Ill-Housed Persons , Marijuana Use , Sex Offenses , Substance-Related Disorders , Adolescent , Adult , Child , Humans , Longitudinal Studies , Substance-Related Disorders/epidemiology , Young AdultABSTRACT
Dendritic cells (DCs) are key regulators of host immunity that are capable of inducing either immune tolerance or activation. In addition to their well-characterized role in shaping immune responses to foreign pathogens, DCs are also known to be critical for the induction and maintenance of anti-tumor immune responses. Therefore, it is important to understand how tumors influence the function of DCs and the quality of immune responses they elicit. Although the majority of studies in this field to date have utilized either immortalized DC lines or DC populations that have been generated under artificial conditions from hematopoietic precursors in vitro, we wished to investigate how tumors impact the function of already differentiated, tissue-resident DCs. Therefore, we used both an ex vivo and in vivo model system to assess the influence of melanoma-derived factors on DC maturation and activation. In ex vivo studies with freshly isolated splenic DCs, we demonstrate that the extent to which DC maturation and activation are altered by these factors correlates with melanoma tumorigenicity, and we identify partial roles for tumor-derived transforming growth factor (TGF)ß1 and vascular endothelial growth factor (VEGF)-A in the altered functionality of DCs. In vivo studies using a lung metastasis model of melanoma also demonstrate tumorigenicity-dependent alterations to the function of lung-resident DCs, and skewed production of proinflammatory cytokines and chemokines by these tumor-altered cells is associated with recruitment of an immune infiltrate that may ultimately favor tumor immune escape and outgrowth.
Subject(s)
Cell Differentiation , Dendritic Cells/pathology , Lung/pathology , Melanoma, Experimental/pathology , Spleen/pathology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Count , Chemokines/genetics , Chemokines/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Immunologic Factors/metabolism , Lymphocyte Activation/immunology , Macrophages/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Metastasis occurs frequently after resection of pancreatic cancer (PaC). In this study, we hypothesized that multi-parametric analysis of pre-metastatic liver biopsies would classify patients according to their metastatic risk, timing and organ site. Liver biopsies obtained during pancreatectomy from 49 patients with localized PaC and 19 control patients with non-cancerous pancreatic lesions were analyzed, combining metabolomic, tissue and single-cell transcriptomics and multiplex imaging approaches. Patients were followed prospectively (median 3 years) and classified into four recurrence groups; early (<6 months after resection) or late (>6 months after resection) liver metastasis (LiM); extrahepatic metastasis (EHM); and disease-free survivors (no evidence of disease (NED)). Overall, PaC livers exhibited signs of augmented inflammation compared to controls. Enrichment of neutrophil extracellular traps (NETs), Ki-67 upregulation and decreased liver creatine significantly distinguished those with future metastasis from NED. Patients with future LiM were characterized by scant T cell lobular infiltration, less steatosis and higher levels of citrullinated H3 compared to patients who developed EHM, who had overexpression of interferon target genes (MX1 and NR1D1) and an increase of CD11B+ natural killer (NK) cells. Upregulation of sortilin-1 and prominent NETs, together with the lack of T cells and a reduction in CD11B+ NK cells, differentiated patients with early-onset LiM from those with late-onset LiM. Liver profiles of NED closely resembled those of controls. Using the above parameters, a machine-learning-based model was developed that successfully predicted the metastatic outcome at the time of surgery with 78% accuracy. Therefore, multi-parametric profiling of liver biopsies at the time of PaC diagnosis may determine metastatic risk and organotropism and guide clinical stratification for optimal treatment selection.
Subject(s)
Liver Neoplasms , Liver , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/surgery , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Male , Female , Middle Aged , Aged , Liver/pathology , Liver/metabolism , Biopsy , Neoplasm Staging , Pancreatectomy , Extracellular Traps/metabolism , PrognosisABSTRACT
OBJECTIVE: Given the significant disparities in diabetes burden and access to care, this study uses qualitative interviews of Black men having HbA1c levels consistent with previously undiagnosed diabetes or prediabetes to understand their perceptions of the healthcare system. RESEARCH DESIGN AND METHODS: We recruited Black men from Black-owned barbershops in Brooklyn, NY, who were screened using point-of-care HbA1c tests. Among those with HbA1c levels within prediabetes or diabetes thresholds, qualitative interviews were conducted to uncover prevalent themes related to their overall health status, health behaviors, utilization of healthcare services, and experiences with the healthcare system. We used a theoretical framework from the William and Mohammed medical mistrust model to guide our qualitative analysis. RESULTS: Fifty-two Black men without a prior history of diabetes and an HbA1c reading at or above 5.7% were interviewed. Many participants stated that their health was in good condition. Some participants expressed being surprised by their abnormal HbA1c reading because it was not previously mentioned by their healthcare providers. Furthermore, many of our participants shared recent examples of negative interactions with physicians when describing their experiences with the healthcare system. Finally, several participants cited a preference for incorporating non-pharmaceutical options in their diabetes management plans. CONCLUSION: To help alleviate the disparity in diabetes burden among Black men, healthcare providers should take a more active role in recognizing and addressing their own implicit biases, engage in understanding the specific healthcare needs and expectations of each patient, and consider emphasizing non-medication approaches to improve glycemic control.
Subject(s)
Diabetes Mellitus , Prediabetic State , Male , Humans , Prediabetic State/diagnosis , Glycated Hemoglobin , Trust , Diabetes Mellitus/diagnosis , Delivery of Health CareABSTRACT
The development of effective therapies against brain metastasis is currently hindered by limitations in our understanding of the molecular mechanisms driving it. Here we define the contributions of tumour-secreted exosomes to brain metastatic colonization and demonstrate that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth. Proteomic analysis identified cell migration-inducing and hyaluronan-binding protein (CEMIP) as elevated in exosomes from brain metastatic but not lung or bone metastatic cells. CEMIP depletion in tumour cells impaired brain metastasis, disrupting invasion and tumour cell association with the brain vasculature, phenotypes rescued by pre-conditioning the brain microenvironment with CEMIP+ exosomes. Moreover, uptake of CEMIP+ exosomes by brain endothelial and microglial cells induced endothelial cell branching and inflammation in the perivascular niche by upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf and Ccl/Cxcl, known to promote brain vascular remodelling and metastasis. CEMIP was elevated in tumour tissues and exosomes from patients with brain metastasis and predicted brain metastasis progression and patient survival. Collectively, our findings suggest that targeting exosomal CEMIP could constitute a future avenue for the prevention and treatment of brain metastasis.
Subject(s)
Brain Neoplasms/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Hyaluronoglucosaminidase/genetics , Neovascularization, Pathologic/genetics , Tumor Microenvironment/genetics , Animals , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CCL1/genetics , Chemokine CCL1/metabolism , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Exosomes/pathology , Humans , Hyaluronoglucosaminidase/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasm Metastasis , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/mortality , Neovascularization, Pathologic/pathology , Signal Transduction , Survival Analysis , Tumor Burden , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor AssaysABSTRACT
Pancreatic ductal adenocarcinomas (PDACs) are highly metastatic with poor prognosis, mainly due to delayed detection. We hypothesized that intercellular communication is critical for metastatic progression. Here, we show that PDAC-derived exosomes induce liver pre-metastatic niche formation in naive mice and consequently increase liver metastatic burden. Uptake of PDAC-derived exosomes by Kupffer cells caused transforming growth factor ß secretion and upregulation of fibronectin production by hepatic stellate cells. This fibrotic microenvironment enhanced recruitment of bone marrow-derived macrophages. We found that macrophage migration inhibitory factor (MIF) was highly expressed in PDAC-derived exosomes, and its blockade prevented liver pre-metastatic niche formation and metastasis. Compared with patients whose pancreatic tumours did not progress, MIF was markedly higher in exosomes from stage I PDAC patients who later developed liver metastasis. These findings suggest that exosomal MIF primes the liver for metastasis and may be a prognostic marker for the development of PDAC liver metastasis.