ABSTRACT
Bipolar disorder is a highly heritable illness, associated with alterations of brain structure. As such, identification of genes influencing inter-individual differences in brain morphology may help elucidate the underlying pathophysiology of bipolar disorder (BP). To identify quantitative trait loci (QTL) that contribute to phenotypic variance of brain structure, structural neuroimages were acquired from family members (n = 527) of extended pedigrees heavily loaded for bipolar disorder ascertained from genetically isolated populations in Latin America. Genome-wide linkage and association analysis were conducted on the subset of heritable brain traits that showed significant evidence of association with bipolar disorder (n = 24) to map QTL influencing regional measures of brain volume and cortical thickness. Two chromosomal regions showed significant evidence of linkage; a QTL on chromosome 1p influencing corpus callosum volume and a region on chromosome 7p linked to cortical volume. Association analysis within the two QTLs identified three SNPs correlated with the brain measures.
Subject(s)
Bipolar Disorder , Bipolar Disorder/genetics , Brain/diagnostic imaging , Genetic Linkage/genetics , Humans , Pedigree , Phenotype , Quantitative Trait Loci/geneticsABSTRACT
BACKGROUND: Disturbed sleep and activity are prominent features of bipolar disorder type I (BP-I). However, the relationship of sleep and activity characteristics to brain structure and behavior in euthymic BP-I patients and their non-BP-I relatives is unknown. Additionally, underlying genetic relationships between these traits have not been investigated. METHODS: Relationships between sleep and activity phenotypes, assessed using actigraphy, with structural neuroimaging (brain) and cognitive and temperament (behavior) phenotypes were investigated in 558 euthymic individuals from multi-generational pedigrees including at least one member with BP-I. Genetic correlations between actigraphy-brain and actigraphy-behavior associations were assessed, and bivariate linkage analysis was conducted for trait pairs with evidence of shared genetic influences. RESULTS: More physical activity and longer awake time were significantly associated with increased brain volumes and cortical thickness, better performance on neurocognitive measures of long-term memory and executive function, and less extreme scores on measures of temperament (impulsivity, cyclothymia). These associations did not differ between BP-I patients and their non-BP-I relatives. For nine activity-brain or activity-behavior pairs there was evidence for shared genetic influence (genetic correlations); of these pairs, a suggestive bivariate quantitative trait locus on chromosome 7 for wake duration and verbal working memory was identified. CONCLUSIONS: Our findings indicate that increased physical activity and more adequate sleep are associated with increased brain size, better cognitive function and more stable temperament in BP-I patients and their non-BP-I relatives. Additionally, we found evidence for pleiotropy of several actigraphy-behavior and actigraphy-brain phenotypes, suggesting a shared genetic basis for these traits.
Subject(s)
Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Bipolar Disorder/psychology , Brain/pathology , Sleep , Actigraphy , Adolescent , Adult , Aged , Aged, 80 and over , Cognition , Family , Female , Humans , Inheritance Patterns/genetics , Linear Models , Male , Memory, Short-Term , Middle Aged , Pedigree , Phenotype , Temperament , Young AdultABSTRACT
Abnormalities in sleep and circadian rhythms are central features of bipolar disorder (BP), often persisting between episodes. We report here, to our knowledge, the first systematic analysis of circadian rhythm activity in pedigrees segregating severe BP (BP-I). By analyzing actigraphy data obtained from members of 26 Costa Rican and Colombian pedigrees [136 euthymic (i.e., interepisode) BP-I individuals and 422 non-BP-I relatives], we delineated 73 phenotypes, of which 49 demonstrated significant heritability and 13 showed significant trait-like association with BP-I. All BP-I-associated traits related to activity level, with BP-I individuals consistently demonstrating lower activity levels than their non-BP-I relatives. We analyzed all 49 heritable phenotypes using genetic linkage analysis, with special emphasis on phenotypes judged to have the strongest impact on the biology underlying BP. We identified a locus for interdaily stability of activity, at a threshold exceeding genome-wide significance, on chromosome 12pter, a region that also showed pleiotropic linkage to two additional activity phenotypes.
Subject(s)
Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Circadian Rhythm , Sleep , Actigraphy , Chromosomes, Human, Pair 1/genetics , Family , Female , Humans , Inheritance Patterns/genetics , Lod Score , Male , Middle Aged , Pedigree , Phenotype , Quantitative Trait, HeritableABSTRACT
Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family members. Additionally, while age had a relatively strong impact on all neurocognitive traits, the effects of age on cognition did not differ between diagnostic groups. Most brain-behaviour associations were also similar across the age range, with the exception of cortical and ventricular volume and lingual gyrus thickness, which showed weak correlations with verbal fluency and inhibitory control at younger ages that increased in magnitude in older subjects, regardless of diagnosis. Findings indicate that neuroanatomical traits potentially impacted by bipolar disorder are significantly associated with multiple neurobehavioural domains. Structure-function relationships are generally preserved across diagnostic groups, with the notable exception of ventrolateral prefrontal and parietal association cortex, volumetric increases in which may be associated with cognitive resilience specifically in individuals with bipolar disorder. Although age impacted all neurobehavioural traits, we did not find any evidence of accelerated cognitive decline specific to bipolar disorder subjects. Regardless of diagnosis, greater global brain volume may represent a protective factor for the effects of ageing on executive functioning.
Subject(s)
Bipolar Disorder/genetics , Bipolar Disorder/pathology , Brain/pathology , Genetic Predisposition to Disease , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Psychiatric Status Rating Scales , Young AdultABSTRACT
Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of BP. In these pedigrees, we performed microarray SNP genotyping of 838 individuals and high-coverage whole-genome sequencing of 449 individuals. We compared polygenic risk scores (PRS), estimated using the latest BP1 genome-wide association study (GWAS) summary statistics, between BP1 individuals and related controls. We also evaluated whether BP1 individuals had a higher burden of rare deleterious single-nucleotide variants (SNVs) and rare copy number variants (CNVs) in a set of genes related to BP1. We found that compared with unaffected relatives, BP1 individuals had higher PRS estimated from BP1 GWAS statistics (P = 0.001 ~ 0.007) and displayed modest increase in burdens of rare deleterious SNVs (P = 0.047) and rare CNVs (P = 0.002 ~ 0.033) in genes related to BP1. We did not observe rare variants segregating in the pedigrees. These results suggest that small-to-moderate effect rare and common variants are more likely to contribute to BP1 risk in these extended pedigrees than a few large-effect rare variants.
Subject(s)
Bipolar Disorder , Bipolar Disorder/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Pedigree , Polymorphism, Single NucleotideABSTRACT
IMPORTANCE: Genetic factors contribute to risk for bipolar disorder (BP), but its pathogenesis remains poorly understood. A focus on measuring multisystem quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that affect BP as well as its component phenotypes. OBJECTIVE: To identify quantitative neurocognitive, temperament-related, and neuroanatomical phenotypes that appear heritable and associated with severe BP (bipolar I disorder [BP-I]) and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN, SETTING, AND PARTICIPANTS: Multigenerational pedigree study in 2 closely related, genetically isolated populations: the Central Valley of Costa Rica and Antioquia, Colombia. A total of 738 individuals, all from Central Valley of Costa Rica and Antioquia pedigrees, participated; among them, 181 have BP-I. MAIN OUTCOMES AND MEASURES: Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging, and diffusion tensor imaging phenotypes. RESULTS: Of 169 phenotypes investigated, 126 (75%) were significantly heritable and 53 (31%) were associated with BP-I. About one-quarter of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions as well as volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND RELEVANCE: To our knowledge, this is the most extensive investigation of BP-relevant component phenotypes to date. Our results identify brain and behavioral quantitative traits that appear to be genetically influenced and show a pattern of BP-I association within families that is consistent with expectations from case-control studies. Together, these phenotypes provide a basis for identifying loci contributing to BP-I risk and for genetic dissection of the disorder.
Subject(s)
Bipolar Disorder/genetics , Genetic Predisposition to Disease/genetics , Phenotype , Adult , Bipolar Disorder/diagnosis , Bipolar Disorder/psychology , Brain/pathology , Cerebral Cortex/pathology , Female , Genetic Linkage , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Organ Size/physiology , Pedigree , Statistics as Topic , TemperamentABSTRACT
We have ascertained in the Central Valley of Costa Rica a new kindred (CR201) segregating for severe bipolar disorder (BP-I). The family was identified by tracing genealogical connections among eight persons initially independently ascertained for a genome wide association study of BP-I. For the genome screen in CR201, we trimmed the family down to 168 persons (82 of whom are genotyped), containing 25 individuals with a best-estimate diagnosis of BP-I. A total of 4,690 SNP markers were genotyped. Analysis of the data was hampered by the size and complexity of the pedigree, which prohibited using exact multipoint methods on the entire kindred. Two-point parametric linkage analysis, using a conservative model of transmission, produced a maximum LOD score of 2.78 on chromosome 6, and a total of 39 loci with LOD scores >1.0. Multipoint parametric and non-parametric linkage analysis was performed separately on four sections of CR201, and interesting (nominal P-value from either analysis <0.01), although not statistically significant, regions were highlighted on chromosomes 1, 2, 3, 12, 16, 19, and 22, in at least one section of the pedigree, or when considering all sections together. The difficulties of analyzing genome wide SNP data for complex disorders in large, potentially informative, kindreds are discussed.
Subject(s)
Bipolar Disorder/genetics , Genome, Human/genetics , Polymorphism, Single Nucleotide , Bipolar Disorder/diagnosis , Costa Rica , Female , Genetic Linkage , Genetic Markers/genetics , Genetic Predisposition to Disease/genetics , Genetic Testing , Genotype , Humans , Lod Score , Male , PedigreeABSTRACT
We performed a whole genome microsatellite marker scan in six multiplex families with bipolar (BP) mood disorder ascertained in Antioquia, a historically isolated population from North West Colombia. These families were characterized clinically using the approach employed in independent ongoing studies of BP in the closely related population of the Central Valley of Costa Rica. The most consistent linkage results from parametric and non-parametric analyses of the Colombian scan involved markers on 5q31-33, a region implicated by the previous studies of BP in Costa Rica. Because of these concordant results, a follow-up study with additional markers was undertaken in an expanded set of Colombian and Costa Rican families; this provided a genome-wide significant evidence of linkage of BPI to a candidate region of approximately 10 cM in 5q31-33 (maximum non-parametric linkage score=4.395, P<0.00004). Interestingly, this region has been implicated in several previous genetic studies of schizophrenia and psychosis, including disease association with variants of the enthoprotin and gamma-aminobutyric acid receptor genes.