Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Pulm Pharmacol Ther ; 83: 102269, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967760

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a respiratory condition characterized by its heterogeneous nature, progressive course, and significant impact on individuals' quality of life. It is a prevalent global health issue affecting a substantial number of individuals and can pose life-threatening complications if left unmanaged. The development and course of COPD can be influenced by a range of risk factors, including genetic predisposition and environmental exposures. Nevertheless, as researchers adopt a more comprehensive and expansive viewpoint of therapeutic techniques, the associated obstacles become more apparent. Indeed, a definitive medication for COPD that reliably leads to symptom alleviation has not yet been discovered. Therefore, the limitations of conventional therapy methods prompted researchers to focus on the advancement of novel procedures, potentially leading to significant outcomes. In contemporary times, the field of regenerative medicine and cell therapy has presented unprecedented opportunities for the exploration of innovative treatments for COPD, owing to the distinctive attributes exhibited by stem cells. Hence, it is imperative to provide due consideration to preclinical investigations and notable characteristics of stem cells as they serve as a means to comprehensively comprehend the fundamental mechanisms of COPD and uncover novel therapeutic strategies with enhanced efficacy for patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Risk Factors , Stem Cells
2.
Adv Exp Med Biol ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37923882

ABSTRACT

Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.

3.
Inflammopharmacology ; 31(1): 171-206, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36600055

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 has been a shocking disaster for healthcare systems worldwide since December 2019. This virus can affect all systems of the body and its symptoms vary from a simple upper respiratory infection to fatal complications including end-organ damage. On the other hand, the normal immune system plays a pivotal role in the recovery of infectious diseases such as COVID-19. However, occasionally, exaggerated immune system inflammation and an excessive synthesis of cytokines, known as a "cytokine storm," can deteriorate the patient's clinical condition. Secondary bacterial co-infection is another problem in COVID-19 which affects the prognosis of patients. Although there are a few studies about this complication, they suggest not using antibiotics commonly, especially broad-spectrum ones. During this pandemic, various approaches and therapeutics were introduced for treating COVID-19 patients. However, available treatments are not helpful enough, especially for complicated cases. Hence, in this era, cell therapy and regenerative medicine will create new opportunities. Therefore, the therapeutic benefits of mesenchymal stem cells, especially their antimicrobial activity, will help us understand how to treat COVID-19. Herein, mesenchymal stem cells may stop the immune system from becoming overactive in COVID-19 patients. On the other side, the stem cells' capacity for repair could encourage natural healing processes.


Subject(s)
Bacterial Infections , COVID-19 , Mesenchymal Stem Cells , Humans , Cytokine Release Syndrome , SARS-CoV-2
4.
Methods Mol Biol ; 2849: 185-202, 2024.
Article in English | MEDLINE | ID: mdl-38189899

ABSTRACT

Vitiligo is a skin condition affecting 1% of the global population, causing non-scaly, chalky-white macules on the skin and hair. It is caused by the pathologic destruction of melanocytes, which produce melanin. Research has focused on the abnormalities of melanocytes and their interaction with neighboring keratinocytes. Current treatments are mainly immunosuppressive drugs and UV radiation, which are scarce and ineffective. To treat vitiligo, regenerative medicine techniques, such as cell-based and cell-free methods, are recommended. Keratinocyte cell transplantation has shown promising results in treating vitiligo. Moreover, studies suggest individualized therapy for diseases can be provided by reprogramming somatic cells into induced pluripotent stem cells. On the other hand, differentiation into particular cell types is a key component of induced pluripotent stem cells-based treatment. In this chapter, the differentiation and validation of human induced pluripotent stem cells into a keratinocyte as a therapeutic option in vitiligo will be discussed.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Keratinocytes , Vitiligo , Humans , Vitiligo/therapy , Vitiligo/pathology , Keratinocytes/cytology , Induced Pluripotent Stem Cells/cytology , Melanocytes/cytology , Melanocytes/metabolism , Cells, Cultured , Cell Culture Techniques/methods
5.
Methods Mol Biol ; 2849: 215-226, 2024.
Article in English | MEDLINE | ID: mdl-38329617

ABSTRACT

In oncological research, the function of tumor-infiltrating natural killer (NK) cells in skin carcinoma presents a viable avenue for novel therapeutic methods. NK cells are essential to the body's defense against malignancies, including skin cancer, and are especially important in more sophisticated cancer immunotherapies such as vaccinations containing dendritic cells. The deadliest type of skin cancer, malignant melanoma, still has a poor prognosis even with advancements in early-stage therapies, which emphasizes the need for novel therapeutic strategies. NK cells from human melanoma metastases were subjected to single-cell RNA-seq analysis, which demonstrated notable variations in the transcriptional programs of tumor-infiltrating and circulating NK cells. Different transcriptional states are displayed by NK cells that have invaded tumors, indicating that they are functionally specialized in areas like chemokine production and cytotoxicity. These results emphasize the functions of NK cells in recruiting other significant immune cell types, such as cross-presenting dendritic cells, and in direct cytotoxicity against malignant cells. Investigating NK cells that infiltrate tumors in skin carcinomas presents a viable approach to comprehending and may be modifying the immune environment surrounding these cancers. It is essential to comprehend the distinct characteristics and roles of NK cells inside the tumor microenvironment in order to create more potent immunotherapeutic approaches to treat skin cancer. In order to perhaps open the door for new directions in cancer immunotherapy, the project intends to establish a thorough technique for the isolation and thorough phenotypic characterization of tumor-infiltrating NK cells in skin carcinoma.


Subject(s)
Killer Cells, Natural , Lymphocytes, Tumor-Infiltrating , Skin Neoplasms , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Phenotype , Single-Cell Analysis/methods , Cell Separation/methods , Tumor Microenvironment/immunology , Melanoma, Cutaneous Malignant
6.
Methods Mol Biol ; 2849: 173-183, 2024.
Article in English | MEDLINE | ID: mdl-38376750

ABSTRACT

Diabetic foot ulcers (DFUs) pose a significant threat to the health and well-being of individuals with diabetes, often leading to lower limb amputations. Fortunately, epidermal stem cell therapy offers hope for improving the treatment of DFUs. By leveraging 3D culture techniques, the scalability of stem cell manufacturing can be greatly enhanced. In particular, using bioactive materials and scaffolds can promote the healing potential of cells, enhance their proliferation, and facilitate their survival. Furthermore, 3D tissue-mimicking cultures can accurately replicate the complex interactions between cells and extracellular matrix, thereby ensuring that the stem cells are primed for therapeutic application. To ensure the safety and quality of these stem cells, it is essential to adhere to good manufacturing practice (GMP) principles during cultivation. This chapter provides a comprehensive overview of the step-by-step process for GMP-based 3D epidermal stem cell cultivation, thus laying the groundwork for developing reliable regenerative medicine therapies.


Subject(s)
Diabetic Foot , Stem Cells , Diabetic Foot/therapy , Diabetic Foot/pathology , Humans , Stem Cells/cytology , Epidermal Cells/cytology , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques/methods , Tissue Scaffolds/chemistry , Regenerative Medicine/methods , Stem Cell Transplantation/methods , Cell Proliferation , Wound Healing , Cells, Cultured , Cell Differentiation
7.
Cardiovasc Toxicol ; 24(2): 184-198, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324115

ABSTRACT

Advancements in cancer treatments have improved survival rates but have also led to increased cardiotoxicities, which can cause adverse cardiovascular events or worsen pre-existing conditions. Herein, cardiotoxicity is a severe adverse effect of 5-fluorouracil (5-FU) therapy in cancer patients, with reported incidence rates ranging from 1 to 20%. Some studies have also suggested subclinical effects and there are reports which have documented instances of cardiac arrest or sudden death during 5-FU treatment, highlighting the importance of timely management of cardiovascular symptoms. However, despite being treated with conventional medical approaches for this cardiotoxicity, a subset of patients has demonstrated suboptimal or insufficient responses. The frequent use of 5-FU in chemotherapy and its association with significant morbidity and mortality indicates the need for a greater understanding of 5-FU-associated cardiotoxicity. It is essential to reduce the adverse effects of anti-tumor medications while preserving their efficacy, which can be achieved through drugs that mitigate toxicity associated with these drugs. Underpinning cardiotoxicity associated with 5-FU therapy also has the potential to offer valuable guidance in pinpointing pharmacological approaches that can be employed to prevent or ameliorate these effects. The present study provides an overview of management strategies for cardiac events induced by fluoropyrimidine-based cancer treatments. The review encompasses the underlying molecular and cellular mechanisms of cardiotoxicity, associated risk factors, and diagnostic methods. Additionally, we provide information on several available treatments and drug choices for angina resulting from 5-FU exposure, including nicorandil, ranolazine, trimetazidine, ivabradine, and sacubitril-valsartan, which have demonstrated potential in mitigating or protecting against chemotherapy-induced adverse cardiac effects.


Subject(s)
Heart Diseases , Neoplasms , Humans , Cardiotoxicity , Fluorouracil/adverse effects , Heart , Heart Diseases/pathology , Neoplasms/drug therapy
8.
Methods Mol Biol ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37801254

ABSTRACT

Psoriasis is a chronic, inflammatory, autoimmune disease with systemic symptoms including seborrheic psoriasis, pustular lesions, plaque lesions, intestinal eruptions, and sometimes arthritis. Moreover, most of the psoriatic subjects report life challenges due to the condition, impacting social activities and daily tasks. Generally, psoriasis treatment options depend on the severity, coexisting conditions, and medical availability. Although psoriasis therapies reduce symptoms and appearance, still it is not curable. Hereupon, searching for optimal therapeutic options continues. Accordingly, stem cell therapy is considered an advanced psoriasis treatment. Subsequently, stem cell therapies' efficacy is uncertain yet. Therefore, further studies are needed. In this context, preclinical studies such as animal experiments are essential for evaluation of treatment modalities. Herein, zebrafish offer advantages in testing treatments and biomedical research applications compared to other vertebrate models. Further, zebrafish skin shares similarities with human skin, making it suitable for studying inflammatory disorders. Hence, the authors discuss the zebrafish psoriasis development method for evaluating the stem cell therapeutic influence.

9.
Methods Mol Biol ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37801255

ABSTRACT

Natural killer (NK) cells are a part of a sophisticated immune system that is necessary for the skin because it is a crucial organ that is continually exposed to environmental influences. Recent studies have shown that NK cell incorporation into three-dimensional (3D) organotypic culture systems for human skin stem cells provides a physiologically relevant environment to study the interactions between immune cells and skin cells, making it a powerful tool for simulating skin diseases and researching these interactions. It has been shown that adding NK cells to 3D organotypic culture systems can improve keratinocyte differentiation and control inflammation in a variety of skin conditions, including psoriasis. In order to increase our knowledge of skin diseases and immune cell interactions, this work intends to propose an optimum approach for adding NK cells to a 3D organotypic culturing system for human skin stem cells. By better comprehending these relationships, researchers hope to develop novel treatments for skin diseases that are more effective and cause fewer side effects than current treatments. To completely understand the mechanisms underlying these interactions and to create new treatments for skin diseases, more research is required. In conclusion, NK cell integration into 3D organotypic culture systems offers a potent tool to investigate immune cell interactions with skin cells in a physiologically appropriate setting, which may result in major improvements in the treatment of skin diseases.

10.
Methods Mol Biol ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37801257

ABSTRACT

Melanoma, a severe type of skin cancer, poses significant management challenges due to its resistance to available treatments. Despite this obstacle, the high immunogenicity of melanoma renders it amenable to immune therapy, and NK cells have been identified as possessing anti-tumor properties in immunotherapy. The development of chimeric antigen receptor (CAR)-modified NK cells, or CAR-NK cells, has shown potential in enhancing immunotherapeutic regimens. To achieve this, researchers have explored various sources of NK cells, including those derived from the placenta, which offers benefits compared to other sources due to their limited ex vivo expansion potential. Recent studies have indicated the capacity to expand functional NK cells from placenta-derived cells in vitro that possess anti-tumor cytolytic properties. This chapter discusses the isolation of full-term human placenta-derived NK cells using Good Manufacturing Practice-based methods for CAR-NK cell therapy in melanoma.

11.
Methods Mol Biol ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38095836

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC), a non-melanoma skin cancer that is frequently diagnosed, is distinguished by its propensity for aggressive behavior, frequent poor response to standard therapy, and capacity to metastasize to distant areas. Utilizing the body's natural immune defense mechanisms, particularly through the use of chimeric antigen receptor (CAR) technology, is receiving increasing attention in the dynamic field of oncological therapies. Although T cells have received most of the attention, this strategy has proven to be highly effective in battling some blood-related malignancies. However, there are considerable challenges when using this method in the context of solid tumors. The innate immune system's natural killer (NK) cells are essential parts because they have the ability to detect and destroy cancer cells. CAR-NK cells are a very promising approach because they combine the natural cytotoxic properties of natural killer (NK) cells with the precise targeting skills of chimeric antigen receptor (CAR) technology. With the use of this integrated strategy, the intrinsic diversity of cutaneous squamous cell carcinoma (cSCC) tumors may be successfully targeted, increasing treatment effectiveness and lowering the risk of tumor recurrence. This tactic is improved by the development of dual-specificity chimeric antigen receptors (CARs), which fully resolve the antigen presentation heterogeneity among tumor cells. In conclusion, the use of CAR-NK cells that precisely target cSCC-specific antigens has the potential to drastically transform therapy approaches for cSCC as well as other difficult solid tumors as oncological research advances. In order to create chimeric antigen receptor (CAR)-natural killer (NK) cells that particularly target antigens linked to cutaneous squamous cell carcinoma (cSCC), the goal of this protocol is to present a detailed method. The ultimate objective is to lay the groundwork for the development of precision immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL