Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nucleic Acids Res ; 47(4): e23, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30590691

ABSTRACT

Genetic manipulation via transgene overexpression, RNAi, or Cas9-based methods is central to biomedical research. Unfortunately, use of these tools is often limited by vector options. We have created a modular platform (pMVP) that allows a gene of interest to be studied in the context of an array of promoters, epitope tags, conditional expression modalities, and fluorescent reporters, packaged in 35 custom destination vectors, including adenovirus, lentivirus, PiggyBac transposon, and Sleeping Beauty transposon, in aggregate >108,000 vector permutations. We also used pMVP to build an epigenetic engineering platform, pMAGIC, that packages multiple gRNAs and either Sa-dCas9 or x-dCas9(3.7) fused to one of five epigenetic modifiers. Importantly, via its compatibility with adenoviral vectors, pMAGIC uniquely enables use of dCas9/LSD1 fusions to interrogate enhancers within primary cells. To demonstrate this, we used pMAGIC to target Sa-dCas9/LSD1 and modify the epigenetic status of a conserved enhancer, resulting in altered expression of the homeobox transcription factor PDX1 and its target genes in pancreatic islets and insulinoma cells. In sum, the pMVP and pMAGIC systems empower researchers to rapidly generate purpose-built, customized vectors for manipulation of gene expression, including via targeted epigenetic modification of regulatory elements in a broad range of disease-relevant cell types.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Engineering/methods , Genetic Vectors/genetics , Homeodomain Proteins/genetics , Trans-Activators/genetics , Transgenes/genetics , Adenoviridae/genetics , Animals , DNA Transposable Elements/genetics , Enhancer Elements, Genetic/genetics , Epigenomics/methods , Gene Editing/methods , Gene Expression Regulation/genetics , HEK293 Cells , Histone Demethylases/genetics , Humans , Insulinoma/metabolism , Islets of Langerhans/metabolism , Lentivirus/genetics , Mice , Promoter Regions, Genetic/genetics , RNA, Guide, Kinetoplastida/genetics , Rats
2.
Biochem J ; 475(24): 3997-4010, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30322885

ABSTRACT

The homeobox transcription factor Nkx6.1 is sufficient to increase functional ß-cell mass, where functional ß-cell mass refers to the combination of ß-cell proliferation, glucose-stimulated insulin secretion (GSIS) and ß-cell survival. Here, we demonstrate that the histone deacetylase 1 (HDAC1), which is an early target of Nkx6.1, is sufficient to increase functional ß-cell mass. We show that HDAC activity is necessary for Nkx6.1-mediated proliferation, and that HDAC1 is sufficient to increase ß-cell proliferation in primary rat islets and the INS-1 832/13 ß-cell line. The increase in HDAC1-mediated proliferation occurs while maintaining GSIS and increasing ß-cell survival in response to apoptotic stimuli. We demonstrate that HDAC1 overexpression results in decreased expression of the cell cycle inhibitor Cdkn1b/p27 which is essential for inhibiting the G1 to S phase transition of the cell cycle. This corresponds with increased expression of key cell cycle activators, such as Cyclin A2, Cyclin B1 and E2F1, which are activated by activation of the Cdk4/Cdk6/Cyclin D holoenzymes due to down-regulation of Cdkn1b/p27. Finally, we demonstrate that overexpression of Cdkn1b/p27 inhibits HDAC1-mediated ß-cell proliferation. Our data suggest that HDAC1 is critical for the Nkx6.1-mediated pathway that enhances functional ß-cell mass.


Subject(s)
Cell Proliferation/physiology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Down-Regulation/physiology , Gene Expression Regulation, Enzymologic , Histone Deacetylase 1/biosynthesis , Insulin-Secreting Cells/metabolism , Animals , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p27/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p27/genetics , Histone Deacetylase 1/genetics , Humans , Male , Rats , Rats, Wistar
3.
Proc Natl Acad Sci U S A ; 111(14): 5242-7, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24706823

ABSTRACT

Loss of functional ß-cell mass is a hallmark of type 1 and type 2 diabetes, and methods for restoring these cells are needed. We have previously reported that overexpression of the homeodomain transcription factor NK6 homeobox 1 (Nkx6.1) in rat pancreatic islets induces ß-cell proliferation and enhances glucose-stimulated insulin secretion, but the pathway by which Nkx6.1 activates ß-cell expansion has not been defined. Here, we demonstrate that Nkx6.1 induces expression of the nuclear receptor subfamily 4, group A, members 1 and 3 (Nr4a1 and Nr4a3) orphan nuclear receptors, and that these factors are both necessary and sufficient for Nkx6.1-mediated ß-cell proliferation. Consistent with this finding, global knockout of Nr4a1 results in a decrease in ß-cell area in neonatal and young mice. Overexpression of Nkx6.1 and the Nr4a receptors results in increased expression of key cell cycle inducers E2F transcription factor 1 and cyclin E1. Furthermore, Nkx6.1 and Nr4a receptors induce components of the anaphase-promoting complex, including ubiquitin-conjugating enzyme E2C, resulting in degradation of the cell cycle inhibitor p21. These studies identify a unique bipartite pathway for activation of ß-cell proliferation, suggesting several unique targets for expansion of functional ß-cell mass.


Subject(s)
Cell Proliferation , DNA-Binding Proteins/physiology , Homeodomain Proteins/physiology , Islets of Langerhans/cytology , Nerve Tissue Proteins/physiology , Nuclear Receptor Subfamily 4, Group A, Member 1/physiology , Animals , Animals, Newborn , Chromatin Immunoprecipitation , Homeodomain Proteins/genetics , Male , Mice, Knockout , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Rats , Rats, Wistar , Ubiquitin-Conjugating Enzymes/metabolism , Up-Regulation
4.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36413406

ABSTRACT

Carbohydrate response element-binding protein (ChREBP) is a carbohydrate-sensing transcription factor that regulates both adaptive and maladaptive genomic responses in coordination of systemic fuel homeostasis. Genetic variants in the ChREBP locus associate with diverse metabolic traits in humans, including circulating lipids. To identify novel ChREBP-regulated hepatokines that contribute to its systemic metabolic effects, we integrated ChREBP ChIP-Seq analysis in mouse liver with human genetic and genomic data for lipid traits and identified hepatocyte growth factor activator (HGFAC) as a promising ChREBP-regulated candidate in mice and humans. HGFAC is a protease that activates the pleiotropic hormone hepatocyte growth factor. We demonstrate that HGFAC-KO mice had phenotypes concordant with putative loss-of-function variants in human HGFAC. Moreover, in gain- and loss-of-function genetic mouse models, we demonstrate that HGFAC enhanced lipid and glucose homeostasis, which may be mediated in part through actions to activate hepatic PPARγ activity. Together, our studies show that ChREBP mediated an adaptive response to overnutrition via activation of HGFAC in the liver to preserve glucose and lipid homeostasis.


Subject(s)
Glucose , Transcription Factors , Animals , Humans , Mice , Glucose/metabolism , Homeostasis , Lipids , Transcription Factors/metabolism
5.
Obesity (Silver Spring) ; 29(3): 569-578, 2021 03.
Article in English | MEDLINE | ID: mdl-33624438

ABSTRACT

OBJECTIVE: The purpose of this study was to establish a biorepository of clinical, metabolomic, and microbiome samples from adolescents with obesity as they undergo lifestyle modification. METHODS: A total of 223 adolescents aged 10 to 18 years with BMI ≥95th percentile were enrolled, along with 71 healthy weight participants. Clinical data, fasting serum, and fecal samples were collected at repeated intervals over 6 months. Herein, the study design, data collection methods, and interim analysis-including targeted serum metabolite measurements and fecal 16S ribosomal RNA gene amplicon sequencing among adolescents with obesity (n = 27) and healthy weight controls (n = 27)-are presented. RESULTS: Adolescents with obesity have higher serum alanine aminotransferase, C-reactive protein, and glycated hemoglobin, and they have lower high-density lipoprotein cholesterol when compared with healthy weight controls. Metabolomics revealed differences in branched-chain amino acid-related metabolites. Also observed was a differential abundance of specific microbial taxa and lower species diversity among adolescents with obesity when compared with the healthy weight group. CONCLUSIONS: The Pediatric Metabolism and Microbiome Study (POMMS) biorepository is available as a shared resource. Early findings suggest evidence of a metabolic signature of obesity unique to adolescents, along with confirmation of previously reported findings that describe metabolic and microbiome markers of obesity.


Subject(s)
Pediatric Obesity/metabolism , Pediatric Obesity/microbiology , Adolescent , Body Weight/physiology , Case-Control Studies , Child , Fasting , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Male , Metabolomics/methods , Preliminary Data , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics
6.
Cell Metab ; 27(6): 1281-1293.e7, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29779826

ABSTRACT

Branched-chain amino acids (BCAA) are strongly associated with dysregulated glucose and lipid metabolism, but the underlying mechanisms are poorly understood. We report that inhibition of the kinase (BDK) or overexpression of the phosphatase (PPM1K) that regulates branched-chain ketoacid dehydrogenase (BCKDH), the committed step of BCAA catabolism, lowers circulating BCAA, reduces hepatic steatosis, and improves glucose tolerance in the absence of weight loss in Zucker fatty rats. Phosphoproteomics analysis identified ATP-citrate lyase (ACL) as an alternate substrate of BDK and PPM1K. Hepatic overexpression of BDK increased ACL phosphorylation and activated de novo lipogenesis. BDK and PPM1K transcript levels were increased and repressed, respectively, in response to fructose feeding or expression of the ChREBP-ß transcription factor. These studies identify BDK and PPM1K as a ChREBP-regulated node that integrates BCAA and lipid metabolism. Moreover, manipulation of the BDK:PPM1K ratio relieves key metabolic disease phenotypes in a genetic model of severe obesity.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , ATP Citrate (pro-S)-Lyase/metabolism , Amino Acids, Branched-Chain/metabolism , Lipogenesis , Obesity/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Male , Middle Aged , Protein Phosphatase 2C , Rats , Rats, Wistar , Rats, Zucker
7.
Mol Cell Biol ; 36(23): 2918-2930, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27620967

ABSTRACT

The homeodomain transcription factor Pdx-1 has important roles in pancreas and islet development as well as in ß-cell function and survival. We previously reported that Pdx-1 overexpression stimulates islet cell proliferation, but the mechanism remains unclear. Here, we demonstrate that overexpression of Pdx-1 triggers proliferation largely by a non-cell-autonomous mechanism mediated by soluble factors. Consistent with this idea, overexpression of Pdx-1 under the control of a ß-cell-specific promoter (rat insulin promoter [RIP]) stimulates proliferation of both α and ß cells, and overexpression of Pdx-1 in islets separated by a Transwell membrane from islets lacking Pdx-1 overexpression activates proliferation in the untreated islets. Microarray and gene ontology (GO) analysis identified inhibin beta-B (Inhbb), an activin subunit and member of the transforming growth factor ß (TGF-ß) superfamily, as a Pdx-1-responsive gene. Overexpression of Inhbb or addition of activin B stimulates rat islet cell and ß-cell proliferation, and the activin receptors RIIA and RIIB are required for the full proliferative effects of Pdx-1 in rat islets. In human islets, Inhbb overexpression stimulates total islet cell proliferation and potentiates Pdx-1-stimulated proliferation of total islet cells and ß cells. In sum, this study identifies a mechanism by which Pdx-1 induces a soluble factor that is sufficient to stimulate both rat and human islet cell proliferation.


Subject(s)
Homeodomain Proteins/metabolism , Inhibin-beta Subunits/genetics , Insulin/genetics , Islets of Langerhans/cytology , Trans-Activators/metabolism , Animals , Cell Proliferation , Cells, Cultured , Gene Expression Profiling , Glucagon-Secreting Cells/cytology , Glucagon-Secreting Cells/metabolism , Humans , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Rats
8.
Contemp Clin Trials ; 26(6): 616-25, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16239128

ABSTRACT

This paper outlines the rationale and design of the Study of the Effects of Diet on Metabolism and Nutrition (STEDMAN) weight loss project, in which detailed biologic profiling of three hundred and fifty obese individuals (body mass index (BMI): 30-50 kg/m(2)) will be conducted as they lose weight via seven distinct interventions. These profiles will be compared to those of fifty normal, healthy, control participants (BMI: 18.5-24.9 kg/m(2)). The interventions include the following: Roux-en-Y gastric bypass surgery, dietary interventions of differing macronutrient composition and diverse pharmacologic interventions. Outcome variables include eight conventional metabolites and CRP measured by standard clinical chemistry techniques, twenty hormones of energy balance and fuel homeostasis measured by radioimmunoassay (RIA) or by enzyme-linked Immunosorbent assay (ELISA), ten pro- and anti-inflammatory cytokines measured using Luminex xMAP technology, one hundred and one intermediary metabolites measured by targeted mass-spectrometry-based methods, and physiologic variables such as body composition measured by dual energy X-ray absorptiometry (DEXA), air displacement plethysmography, and abdominal computerized tomography (CT), insulin sensitivity measured by intravenous glucose tolerance test (IV-GTT) and metabolic rate measured by indirect calorimetry. Results from this study will expand our knowledge of the biology of obesity and weight regulation and may lead to targeted strategies for its treatment and control.


Subject(s)
Clinical Trials as Topic , Obesity/therapy , Weight Loss , Adolescent , Adult , Aged , Anti-Obesity Agents/therapeutic use , Body Weights and Measures , Clinical Trials as Topic/methods , Gastric Bypass , Humans , Middle Aged , Obesity/blood , Obesity/metabolism , Research Design
9.
Islets ; 7(1): e1027854, 2015.
Article in English | MEDLINE | ID: mdl-26030060

ABSTRACT

Type 1 and type 2 diabetes are ultimately characterized by depleted ß-cell mass. Characterization of the molecular pathways that control ß-cell proliferation could be harnessed to restore these cells. The homeobox ß-cell transcription factor Nkx6.1 induces ß-cell proliferation by activating the orphan nuclear receptors Nr4a1 and Nr4a3. Here, we demonstrate that Nkx6.1 localizes to the promoter of the mitotic kinase AURKA (Aurora Kinase A) and induces its expression. Adenovirus mediated overexpression of AURKA is sufficient to induce proliferation in primary rat islets while maintaining glucose stimulated insulin secretion. Furthermore, AURKA is necessary for Nkx6.1 mediated ß-cell proliferation as demonstrated by shRNA mediated knock down and pharmacological inhibition of AURKA kinase activity. AURKA preferentially induces DNA replication in ß-cells as measured by BrdU incorporation, and enhances the rate of histone H3 phosphorylation in primary ß-cells, demonstrating that AURKA induces the replicative and mitotic cell cycle phases in rat ß-cells. Finally, overexpression of AURKA results in phosphorylation of the cell cycle regulator p53, which targets p53 for degradation and permits cell cycle progression. These studies define a pathway by which AURKA upregulation by Nkx6.1 results in phosphorylation and degradation of p53, thus removing a key inhibitory factor and permitting engagement of the ß-cell proliferation pathway.


Subject(s)
Aurora Kinase A/metabolism , Homeodomain Proteins/metabolism , Insulin-Secreting Cells/metabolism , Animals , Aurora Kinase A/genetics , Cell Proliferation/genetics , DNA-Binding Proteins , Genes, p53/genetics , Homeodomain Proteins/genetics , In Vitro Techniques/methods , Nerve Tissue Proteins , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , RNA/genetics , Rats , Transduction, Genetic
10.
Nat Commun ; 6: 6069, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25648650

ABSTRACT

Maternal glucose levels during pregnancy impact the developing fetus, affecting metabolic health both early and later on in life. Both genetic and environmental factors influence maternal metabolism, but little is known about the genetic mechanisms that alter glucose metabolism during pregnancy. Here, we report that haplotypes previously associated with gestational hyperglycaemia in the third trimester disrupt regulatory element activity and reduce expression of the nearby HKDC1 gene. We further find that experimentally reducing or increasing HKDC1 expression reduces or increases hexokinase activity, respectively, in multiple cellular models; in addition, purified HKDC1 protein has hexokinase activity in vitro. Together, these results suggest a novel mechanism of gestational glucose regulation in which the effects of genetic variants in multiple regulatory elements alter glucose homeostasis by coordinately reducing expression of the novel hexokinase HKDC1.


Subject(s)
Hexokinase/metabolism , Hyperglycemia/enzymology , Blotting, Western , Female , Genome-Wide Association Study , Genotype , Haplotypes/genetics , Hep G2 Cells , Hexokinase/genetics , Humans , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction
11.
OMICS ; 13(1): 21-35, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19290809

ABSTRACT

The Study of the Effects of Diet on Metabolism and Nutrition (STEDMAN) Project uses comprehensive metabolic profiling to probe biochemical mechanisms of weight loss in humans. Measurements at baseline, 2 and 4 weeks, 6 and 12 months included diet, body composition, metabolic rate, hormones, and 80 intermediary metabolites measured by mass spectrometry. In 27 obese adults in a behavioral weight loss intervention, median weight decreased 13.9 lb over the first 6 months, then reverted towards baseline by 12 months. Insulin resistance (HOMA) was partially ameliorated in the first 6 months and showed sustained improvement at 12 months despite weight regain. Ghrelin increased with weight loss and reverted to baseline, whereas leptin and PYY fell at 6 months and remained persistently low. NPY levels did not change. Factors possibly contributing to sustained improvement in insulin sensitivity despite weight regain include adiponectin (increased by 12 months), IGF-1 (increased during weight loss and continued to increase during weight regain), and visceral fat (fell at 6 months but did not change thereafter). We observed a persistent reduction in free fatty acids, branched chain amino acids, and related metabolites that may contribute to improved insulin action. These findings provide evidence for sustained benefits of weight loss in obese humans and insights into mechanisms.


Subject(s)
Behavior Therapy , Energy Metabolism , Obesity/diet therapy , Weight Gain , Weight Loss , Adiponectin/metabolism , Adult , Biomarkers/metabolism , Body Weight , Diet , Female , Ghrelin/metabolism , Humans , Insulin Resistance , Insulin-Like Growth Factor I/metabolism , Leptin/metabolism , Middle Aged , Neuropeptide Y/metabolism , Peptide YY/metabolism
12.
Cell Metab ; 9(4): 311-26, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19356713

ABSTRACT

Metabolomic profiling of obese versus lean humans reveals a branched-chain amino acid (BCAA)-related metabolite signature that is suggestive of increased catabolism of BCAA and correlated with insulin resistance. To test its impact on metabolic homeostasis, we fed rats on high-fat (HF), HF with supplemented BCAA (HF/BCAA), or standard chow (SC) diets. Despite having reduced food intake and a low rate of weight gain equivalent to the SC group, HF/BCAA rats were as insulin resistant as HF rats. Pair-feeding of HF diet to match the HF/BCAA animals or BCAA addition to SC diet did not cause insulin resistance. Insulin resistance induced by HF/BCAA feeding was accompanied by chronic phosphorylation of mTOR, JNK, and IRS1Ser307 and by accumulation of multiple acylcarnitines in muscle, and it was reversed by the mTOR inhibitor, rapamycin. Our findings show that in the context of a dietary pattern that includes high fat consumption, BCAA contributes to development of obesity-associated insulin resistance.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Insulin Resistance/physiology , Metabolomics , Obesity/metabolism , Thinness/metabolism , Animals , Cytokines/metabolism , Demography , Dietary Fats/administration & dosage , Dietary Fats/pharmacology , Dietary Supplements , Feeding Behavior/drug effects , Female , Hormones/metabolism , Humans , Insulin/metabolism , Male , Mass Spectrometry , Metabolome , Middle Aged , Rats , Rats, Wistar , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL