Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Virol ; 98(3): e0015324, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421168

ABSTRACT

Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE: Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.


Subject(s)
Biomolecular Condensates , Respiratory Syncytial Virus, Human , Humans , Animals , Cattle , Cell Line , In Situ Hybridization, Fluorescence , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Ribosomes/metabolism , Virus Replication
2.
Am J Respir Cell Mol Biol ; 66(2): 196-205, 2022 02.
Article in English | MEDLINE | ID: mdl-34710339

ABSTRACT

Immunopathology occurs in the lung and spleen in fatal coronavirus disease (COVID-19), involving monocytes/macrophages and plasma cells. Antiinflammatory therapy reduces mortality, but additional therapeutic targets are required. We aimed to gain mechanistic insight into COVID-19 immunopathology by targeted proteomic analysis of pulmonary and splenic tissues. Lung parenchymal and splenic tissue was obtained from 13 postmortem examinations of patients with fatal COVID-19. Control tissue was obtained from cancer resection samples (lung) and deceased organ donors (spleen). Protein was extracted from tissue by phenol extraction. Olink multiplex immunoassay panels were used for protein detection and quantification. Proteins with increased abundance in the lung included MCP-3, antiviral TRIM21, and prothrombotic TYMP. OSM and EN-RAGE/S100A12 abundance was correlated and associated with inflammation severity. Unsupervised clustering identified "early viral" and "late inflammatory" clusters with distinct protein abundance profiles, and differences in illness duration before death and presence of viral RNA. In the spleen, lymphocyte chemotactic factors and CD8A were decreased in abundance, and proapoptotic factors were increased. B-cell receptor signaling pathway components and macrophage colony stimulating factor (CSF-1) were also increased. Additional evidence for a subset of host factors (including DDX58, OSM, TYMP, IL-18, MCP-3, and CSF-1) was provided by overlap between 1) differential abundance in spleen and lung tissue; 2) meta-analysis of existing datasets; and 3) plasma proteomic data. This proteomic analysis of lung parenchymal and splenic tissue from fatal COVID-19 provides mechanistic insight into tissue antiviral responses, inflammation and disease stages, macrophage involvement, pulmonary thrombosis, splenic B-cell activation, and lymphocyte depletion.


Subject(s)
COVID-19/immunology , Gene Expression Regulation/immunology , Lung/immunology , SARS-CoV-2/immunology , Spleen/immunology , Aged , Aged, 80 and over , Autopsy , Female , Humans , Inflammation/immunology , Male , Proteomics
3.
Mol Cell Proteomics ; 19(5): 793-807, 2020 05.
Article in English | MEDLINE | ID: mdl-32075873

ABSTRACT

The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.


Subject(s)
Antiviral Agents/metabolism , Chemokines/metabolism , Proteome/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/physiology , Bronchi/pathology , Cell Line , Child , Epithelial Cells/pathology , Epithelial Cells/virology , Goblet Cells/metabolism , Goblet Cells/virology , Homeostasis , Humans , Infant , Kinetics , Nasopharynx/virology , Respiratory Mucosa/metabolism , Respiratory Syncytial Virus, Human/growth & development , Tropism , Viral Proteins/metabolism
4.
Am J Respir Crit Care Med ; 203(2): 192-201, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33217246

ABSTRACT

Rationale: In life-threatening coronavirus disease (COVID-19), corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or an independent immunopathologic process is unknown.Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses and the relationships among viral presence, inflammation, and organ injury.Methods: Tissue was acquired from 11 detailed postmortem examinations. SARS-CoV-2 organotropism was mapped by using multiplex PCR and sequencing, with cellular resolution achieved by in situ viral S (spike) protein detection. Histologic evidence of inflammation was quantified from 37 anatomic sites, and the pulmonary immune response was characterized by using multiplex immunofluorescence.Measurements and Main Results: Multiple aberrant immune responses in fatal COVID-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein between or within tissues. An arteritis was identified in the lung, which was further characterized as a monocyte/myeloid-rich vasculitis, and occurred together with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticuloendothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues.Conclusions: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease. Our data highlight novel immunopathologic mechanisms and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma-cell responses as well as promote pathogen tolerance in COVID-19.


Subject(s)
COVID-19/immunology , Inflammation/virology , Lung/immunology , Multiple Organ Failure/virology , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Autopsy , Biopsy , COVID-19/pathology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Female , Fluorescent Antibody Technique , Humans , Inflammation/immunology , Inflammation/pathology , Lung/pathology , Lung/virology , Male , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , SARS-CoV-2/pathogenicity , Severity of Illness Index
5.
Cell Tissue Res ; 375(2): 409-424, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30259138

ABSTRACT

The in vitro 3D culture of intestinal epithelium is a valuable resource in the study of its function. Organoid culture exploits stem cells' ability to regenerate and produce differentiated epithelium. Intestinal organoid models from rodent or human tissue are widely available whereas large animal models are not. Livestock enteric and zoonotic diseases elicit significant morbidity and mortality in animal and human populations. Therefore, livestock species-specific models may offer novel insights into host-pathogen interactions and disease responses. Bovine and porcine jejunum were obtained from an abattoir and their intestinal crypts isolated, suspended in Matrigel, cultured, cryopreserved and resuscitated. 'Rounding' of crypts occurred followed by budding and then enlargement of the organoids. Epithelial cells were characterised using immunofluorescent staining and confocal microscopy. Organoids were successfully infected with Toxoplasma gondii or Salmonella typhimurium. This 3D organoid model offers a long-term, renewable resource for investigating species-specific intestinal infections with a variety of pathogens.


Subject(s)
Cell Culture Techniques/methods , Intestinal Mucosa/metabolism , Animals , Cattle , Cell Differentiation , Cryopreservation , Livestock , Mice, Inbred C57BL , Organoids/metabolism , Phenotype , Salmonella typhimurium/physiology , Swine , Tissue Survival , Toxoplasma/physiology
6.
Parasitology ; 146(14): 1773-1784, 2019 12.
Article in English | MEDLINE | ID: mdl-31190665

ABSTRACT

Filarial nematodes possess glutathione transferases (GSTs), ubiquitous enzymes with the potential to detoxify xenobiotic and endogenous substrates, and modulate the host immune system, which may aid worm infection establishment, maintenance and survival in the host. Here we have identified and characterized a σ class glycosylated GST (OoGST1), from the cattle-infective filarial nematode Onchocerca ochengi, which is homologous (99% amino acid identity) with an immunodominant GST and potential vaccine candidate from the human parasite, O. volvulus, (OvGST1b). Onchocerca ochengi native GSTs were purified using a two-step affinity chromatography approach, resolved by 2D and 1D SDS-PAGE and subjected to enzymic deglycosylation revealing the existence of at least four glycoforms. A combination of lectin-blotting and mass spectrometry (MS) analyses of the released N-glycans indicated that OoGST1 contained mainly oligomannose Man5GlcNAc2 structure, but also hybrid- and larger oligommanose-type glycans in a lower proportion. Furthermore, purified OoGST1 showed prostaglandin synthase activity as confirmed by Liquid Chromatography (LC)/MS following a coupled-enzyme assay. This is only the second reported and characterized glycosylated GST and our study highlights its potential role in host-parasite interactions and use in the study of human onchocerciasis.


Subject(s)
Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Onchocerca/enzymology , Onchocerca/genetics , Onchocerciasis/veterinary , Amino Acid Sequence , Animals , Cattle/parasitology , Cattle Diseases/parasitology , Chromatography, Affinity , Chromatography, Liquid , Female , Glycosylation , Mass Spectrometry , Onchocerca volvulus/enzymology , Onchocerca volvulus/genetics , Onchocerciasis/parasitology , Polysaccharides/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Protein Structure, Tertiary
7.
Proteomics ; 18(16): e1800132, 2018 08.
Article in English | MEDLINE | ID: mdl-29952134

ABSTRACT

Recently, 3D small intestinal organoids (enteroids) have been developed from cultures of intestinal stem cells which differentiate in vitro to generate all the differentiated epithelial cell types associated with the intestine and mimic the structural properties of the intestine observed in vivo. Small-molecule drug treatment can skew organoid epithelial cell differentiation toward particular lineages, and these skewed enteroids may provide useful tools to study specific epithelial cell populations, such as goblet and Paneth cells. However, the extent to which differentiated epithelial cell populations in these skewed enteroids represent their in vivo counterparts is not fully understood. This study utilises label-free quantitative proteomics to determine whether skewing murine enteroid cultures toward the goblet or Paneth cell lineages results in changes in abundance of proteins associated with these cell lineages in vivo. Here, proteomics data confirms that skewed enteroids recapitulate important features of the in vivo gut environment, demonstrating that they can serve as useful models for the investigation of normal and disease processes in the intestine. Furthermore, comparison of mass spectrometry data with histology data contained within the Human Protein Atlas identifies putative novel markers for goblet and Paneth cells.


Subject(s)
Cell Lineage , Epithelial Cells/metabolism , Goblet Cells/metabolism , Organoids/metabolism , Paneth Cells/metabolism , Proteomics/methods , Animals , Benzothiazoles/pharmacology , Cell Differentiation , Diamines/pharmacology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Goblet Cells/cytology , Goblet Cells/drug effects , Mice , Organoids/cytology , Organoids/drug effects , Paneth Cells/cytology , Paneth Cells/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Thiazoles/pharmacology
8.
Mol Cell Proteomics ; 15(8): 2554-75, 2016 08.
Article in English | MEDLINE | ID: mdl-27226403

ABSTRACT

Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-ß and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.


Subject(s)
Onchocerca/physiology , Onchocerciasis/parasitology , Proteomics/methods , Protozoan Proteins/metabolism , Animals , Cattle , Disease Models, Animal , Female , Gene Expression Regulation, Developmental , Host-Parasite Interactions , Humans , Male , Onchocerca/metabolism , Onchocerciasis/veterinary , Phylogeny , Protein Interaction Maps
9.
J Proteome Res ; 15(12): 4290-4303, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27786485

ABSTRACT

Ebola virus (EBOV) infection results in severe disease and in some cases lethal hemorrhagic fever. The infection is directed by seven viral genes that encode nine viral proteins. By definition, viruses are obligate intracellular parasites and require aspects of host cell biology in order to replicate their genetic material, assemble new virus particles, and subvert host cell antiviral responses. Currently licensed antivirals are targeted against viral proteins to inhibit their function. However, experience with treating HIV and influenza virus demonstrates that resistant viruses are soon selected. An emerging area in virology is to transiently target host cell proteins that play critical proviral roles in virus biology, especially for acute infections. This has the advantage that the protein being targeted is evolutionary removed from the genome of the virus. Proteomics can aid in discovery biology and identify cellular proteins that may be utilized by the virus to facilitate infection. This work focused on defining the interactome of the EBOV nucleoprotein and identified that cellular chaperones, including HSP70, associate with this protein to promote stability. Utilization of a mini-genome replication system based on a recent Makona isolate demonstrated that disrupting the stability of NP had an adverse effect on viral RNA synthesis.


Subject(s)
Ebolavirus/physiology , Molecular Chaperones/metabolism , Nucleoproteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Molecular Targeted Therapy/methods , Nucleoproteins/chemistry , Protein Stability , Proviruses , RNA, Viral/biosynthesis , Viral Proteins/metabolism , Virus Replication
10.
J Virol ; 89(2): 917-30, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25355874

ABSTRACT

UNLABELLED: The human respiratory syncytial virus (HRSV) core viral RNA polymerase comprises the large polymerase protein (L) and its cofactor, the phosphoprotein (P), which associate with the viral ribonucleoprotein complex to replicate the genome and, together with the M2-1 protein, transcribe viral mRNAs. While cellular proteins have long been proposed to be involved in the synthesis of HRSV RNA by associating with the polymerase complex, their characterization has been hindered by the difficulty of purifying the viral polymerase from mammalian cell culture. In this study, enhanced green fluorescent protein (EGFP)-tagged L- and P-protein expression was coupled with high-affinity anti-GFP antibody-based immunoprecipitation and quantitative proteomics to identify cellular proteins that interacted with either the L- or the P-proteins when expressed as part of a biologically active viral RNP. Several core groups of cellular proteins were identified that interacted with each viral protein including, in both cases, protein chaperones. Ablation of chaperone activity by using small-molecule inhibitors confirmed previously reported studies which suggested that this class of proteins acted as positive viral factors. Inhibition of HSP90 chaperone function in the current study showed that HSP90 is critical for L-protein function and stability, whether in the presence or absence of the P-protein. Inhibition studies suggested that HSP70 also disrupts virus biology and might help the polymerase remodel the nucleocapsid to allow RNA synthesis to occur efficiently. This indicated a proviral role for protein chaperones in HRSV replication and demonstrates that the function of cellular proteins can be targeted as potential therapeutics to disrupt virus replication. IMPORTANCE: Human respiratory syncytial virus (HRSV) represents a major health care and economic burden, being the main cause of severe respiratory infections in infants worldwide. No vaccine or effective therapy is available. This study focused on identifying those cellular proteins that potentially interact specifically with the viral proteins that are central to virus replication and transcription, with a view to providing potential targets for the development of a specific, transient therapeutic which disrupts virus biology but prevents the emergence of resistance, while maintaining cell viability. In particular, protein chaperones (heat shock proteins 70 and 90), which aid protein folding and function, were identified. The mechanism by which these chaperones contribute to virus biology was tested, and this study demonstrates to the field that cellular protein chaperones may be required for maintaining the correct folding and therefore functionality of specific proteins within the virus replication complex.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Host-Pathogen Interactions , Molecular Chaperones/metabolism , Protein Interaction Maps , Respiratory Syncytial Virus, Human/physiology , Viral Proteins/metabolism , Virus Replication , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Protein Binding , Protein Interaction Mapping , Protein Stability
11.
Mol Cell Proteomics ; 13(10): 2527-44, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24958169

ABSTRACT

Filarial nematodes (superfamily Filarioidea) are responsible for an annual global health burden of ∼6.3 million disability-adjusted life-years, which represents the greatest single component of morbidity attributable to helminths affecting humans. No vaccine exists for the major filarial diseases, lymphatic filariasis and onchocerciasis; in part because research on protective immunity against filariae has been constrained by the inability of the human-parasitic species to complete their lifecycles in laboratory mice. However, the rodent filaria Litomosoides sigmodontis has become a popular experimental model, as BALB/c mice are fully permissive for its development and reproduction. Here, we provide a comprehensive analysis of excretory-secretory products from L. sigmodontis across five lifecycle stages and identifications of host proteins associated with first-stage larvae (microfilariae) in the blood. Applying intensity-based quantification, we determined the abundance of 302 unique excretory-secretory proteins, of which 64.6% were present in quantifiable amounts only from gravid adult female nematodes. This lifecycle stage, together with immature microfilariae, released four proteins that have not previously been evaluated as vaccine candidates: a predicted 28.5 kDa filaria-specific protein, a zonadhesin and SCO-spondin-like protein, a vitellogenin, and a protein containing six metridin-like ShK toxin domains. Female nematodes also released two proteins derived from the obligate Wolbachia symbiont. Notably, excretory-secretory products from all parasite stages contained several uncharacterized members of the transthyretin-like protein family. Furthermore, biotin labeling revealed that redox proteins and enzymes involved in purinergic signaling were enriched on the adult nematode cuticle. Comparison of the L. sigmodontis adult secretome with that of the human-infective filarial nematode Brugia malayi (reported previously in three independent published studies) identified differences that suggest a considerable underlying diversity of potential immunomodulators. The molecules identified in L. sigmodontis excretory-secretory products show promise not only for vaccination against filarial infections, but for the amelioration of allergy and autoimmune diseases.


Subject(s)
Filariasis/parasitology , Filarioidea/growth & development , Helminth Proteins/genetics , Proteomics/methods , Animals , Disease Models, Animal , Female , Filariasis/blood , Filarioidea/classification , Filarioidea/metabolism , Gene Expression Regulation, Developmental , Genetic Variation , Helminth Proteins/metabolism , Male , Mice , Mice, Inbred BALB C , Sex Factors
12.
Genome Res ; 22(12): 2467-77, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22919073

ABSTRACT

The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response.


Subject(s)
Gene Expression Regulation, Bacterial , Genome, Bacterial , Onchocerca volvulus/microbiology , Symbiosis/genetics , Wolbachia/genetics , Animals , Anti-Bacterial Agents/metabolism , Chromatography, Liquid , DNA Replication , DNA, Helminth/genetics , Female , Male , Proteomics/methods , Riboflavin/metabolism , Sequence Analysis, RNA , Tandem Mass Spectrometry , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Transcriptome , Up-Regulation , Wolbachia/immunology
13.
Biochem Soc Trans ; 42(4): 886-92, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25109974

ABSTRACT

The genomes of rats and mice both contain a cluster of multiple genes that encode small (18-20 kDa) eight-stranded ß-barrel lipocalins that are expressed in multiple secretory tissues, some of which enter urine via hepatic biosynthesis. These proteins have been given different names, but are mostly generically referred to as MUPs (major urinary proteins). The mouse MUP cluster is increasingly well understood, and, in particular, a number of roles for MUPs in chemical communication between conspecifics have been established. By contrast, the literature on the rat orthologues is much less well developed and is fragmented. In the present review, we summarize current knowledge on the MUPs from the Norway (or brown) rat, Rattus norvegicus.


Subject(s)
Proteins/metabolism , Animals , Female , Male , Mice , Multigene Family/genetics , Proteins/genetics , Rats
14.
Biochem Soc Trans ; 42(4): 837-45, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25109966

ABSTRACT

The high degree of protein sequence similarity in the MUPs (major urinary proteins) poses considerable challenges for their individual differentiation, analysis and quantification. In the present review, we discuss MS approaches for MUP quantification, at either the protein or the peptide level. In particular, we describe an approach to multiplexed quantification based on the design and synthesis of novel proteins (QconCATs) that are concatamers of quantification standards, providing a simple route to the generation of a set of stable-isotope-labelled peptide standards. The MUPs pose a particular challenge to QconCAT design, because of their sequence similarity and the limited number of peptides that can be used to construct the standards. Such difficulties can be overcome by careful attention to the analytical workflow.


Subject(s)
Mass Spectrometry/methods , Proteins/analysis , Proteins/metabolism , Animals , Isotope Labeling , Proteomics
15.
BMC Biol ; 8: 75, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20525243

ABSTRACT

BACKGROUND: Among invertebrates, specific pheromones elicit inherent (fixed) behavioural responses to coordinate social behaviours such as sexual recognition and attraction. By contrast, the much more complex social odours of mammals provide a broad range of information about the individual owner and stimulate individual-specific responses that are modulated by learning. How do mammals use such odours to coordinate important social interactions such as sexual attraction while allowing for individual-specific choice? We hypothesized that male mouse urine contains a specific pheromonal component that invokes inherent sexual attraction to the scent and which also stimulates female memory and conditions sexual attraction to the airborne odours of an individual scent owner associated with this pheromone. RESULTS: Using wild-stock house mice to ensure natural responses that generalize across individual genomes, we identify a single atypical male-specific major urinary protein (MUP) of mass 18893Da that invokes a female's inherent sexual attraction to male compared to female urinary scent. Attraction to this protein pheromone, which we named darcin, was as strong as the attraction to intact male urine. Importantly, contact with darcin also stimulated a strong learned attraction to the associated airborne urinary odour of an individual male, such that, subsequently, females were attracted to the airborne scent of that specific individual but not to that of other males. CONCLUSIONS: This involatile protein is a mammalian male sex pheromone that stimulates a flexible response to individual-specific odours through associative learning and memory, allowing female sexual attraction to be inherent but selective towards particular males. This 'darcin effect' offers a new system to investigate the neural basis of individual-specific memories in the brain and give new insights into the regulation of behaviour in complex social mammals.See associated Commentary http://www.biomedcentral.com/1741-7007/8/71.


Subject(s)
Association Learning/physiology , Memory/physiology , Odorants , Proteins/metabolism , Sex Attractants/urine , Sexual Behavior, Animal/physiology , Animals , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Female , Gas Chromatography-Mass Spectrometry , Intercellular Signaling Peptides and Proteins , Male , Mice , Spectrometry, Mass, Electrospray Ionization
16.
Ticks Tick Borne Dis ; 11(1): 101299, 2020 01.
Article in English | MEDLINE | ID: mdl-31542229

ABSTRACT

Vertically-transmitted bacterial symbionts are widespread in ticks and have manifold impacts on the epidemiology of tick-borne diseases. For instance, they may provide essential nutrients to ticks, affect vector competence, induce immune responses in vertebrate hosts, or even evolve to become vertebrate pathogens. The deer or blacklegged tick Ixodes scapularis harbours the symbiont Rickettsia buchneri in its ovarian tissues. Here we show by molecular, proteomic and imaging methods that R. buchneri is also capable of colonising the salivary glands of wild I. scapularis. This finding has important implications for the diagnosis of rickettsial infections and for pathogen-symbiont interactions in this notorious vector of Lyme borreliosis.


Subject(s)
Ixodes/microbiology , Rickettsia/physiology , Symbiosis , Animals , Proteomics , Salivary Glands/diagnostic imaging , Salivary Glands/microbiology
17.
Physiol Behav ; 96(2): 253-61, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-18973768

ABSTRACT

Individual variation in a specialised set of scent communication proteins, the major urinary proteins (MUPs), provides a genetic identity signature that underlies individual and kin recognition, and the assessment of heterozygosity in wild house mice. Here we examine the extent to which MUP variation is retained among 30 classical strains of laboratory mice from three main lineages (Castle, C57, Swiss). Normal wild-type variation in urinary MUP pattern appears to have been lost at an early stage in the derivation of the classical laboratory strains. All strains from the Castle and Swiss lineages shared the same "individual" MUP pattern, consistent with common ancestry from very few founders, while those from the C57 lineage shared a different pattern. Notably, individual variation in MUP pattern was no greater within the Swiss outbred ICR (CD-1) strain than typical for inbred strains. Total urinary protein concentration varied considerably between even closely related substrains, together with minor variation in the relative amount of each MUP isoform expressed, although the functional significance of such quantitative variation in MUP expression has yet to be established. Expression was 2-8 fold higher among males, while a MUP expressed by most male but not female wild mice was expressed by C57 males but variably among Castle and Swiss males and occasionally by females in some strains. The lack of normal variation in MUP patterns within and between strains has important implications for the use of laboratory mice in behavioural or neurophysiological research investigating social recognition or mate choice.


Subject(s)
Mice/genetics , Mice/metabolism , Proteins/metabolism , Animals , Creatine/metabolism , Female , Male , Sex Factors , Species Specificity
18.
Article in English | MEDLINE | ID: mdl-31555604

ABSTRACT

When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection.


Subject(s)
Host-Parasite Interactions/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Toxoplasma/physiology , Toxoplasma/pathogenicity , Animals , Cell Culture Techniques , Cholesterol , Collagen , Disease Models, Animal , Epithelial Cells/parasitology , Epithelial Cells/pathology , Humans , Intestinal Mucosa/diagnostic imaging , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL
19.
Sci Rep ; 9(1): 10757, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31341188

ABSTRACT

Major urinary proteins (MUP) are the major component of the urinary protein fraction in house mice (Mus spp.) and rats (Rattus spp.). The structure, polymorphism and functions of these lipocalins have been well described in the western European house mouse (Mus musculus domesticus), clarifying their role in semiochemical communication. The complexity of these roles in the mouse raises the question of similar functions in other rodents, including the Norway rat, Rattus norvegicus. Norway rats express MUPs in urine but information about specific MUP isoform sequences and functions is limited. In this study, we present a detailed molecular characterization of the MUP proteoforms expressed in the urine of two laboratory strains, Wistar Han and Brown Norway, and wild caught animals, using a combination of manual gene annotation, intact protein mass spectrometry and bottom-up mass spectrometry-based proteomic approaches. Cluster analysis shows the existence of only 10 predicted mup genes. Further, detailed sequencing of the urinary MUP isoforms reveals a less complex pattern of primary sequence polymorphism in the rat than the mouse. However, unlike the mouse, rat MUPs exhibit added complexity in the form of post-translational modifications, including the phosphorylation of Ser4 in some isoforms, and exoproteolytic trimming of specific isoforms. Our results raise the possibility that urinary MUPs may have different roles in rat chemical communication than those they play in the house mouse. Shotgun proteomics data are available via ProteomExchange with identifier PXD013986.


Subject(s)
Proteins/genetics , Rats/genetics , Animals , Female , Male , Polymorphism, Genetic , Proteins/metabolism , Proteinuria/genetics , Proteomics , Rats/metabolism , Rats, Wistar , Sex Factors , Urinary Tract/metabolism
20.
Dis Model Mech ; 12(3)2019 03 18.
Article in English | MEDLINE | ID: mdl-30814064

ABSTRACT

Paneth cells are key epithelial cells that provide an antimicrobial barrier and maintain integrity of the small-intestinal stem cell niche. Paneth cell abnormalities are unfortunately detrimental to gut health and are often associated with digestive pathologies such as Crohn's disease or infections. Similar alterations are observed in individuals with impaired autophagy, a process that recycles cellular components. The direct effect of autophagy impairment on Paneth cells has not been analysed. To investigate this, we generated a mouse model lacking Atg16l1 specifically in intestinal epithelial cells, making these cells impaired in autophagy. Using three-dimensional intestinal organoids enriched for Paneth cells, we compared the proteomic profiles of wild-type and autophagy-impaired organoids. We used an integrated computational approach combining protein-protein interaction networks, autophagy-targeted proteins and functional information to identify the mechanistic link between autophagy impairment and disrupted pathways. Of the 284 altered proteins, 198 (70%) were more abundant in autophagy-impaired organoids, suggesting reduced protein degradation. Interestingly, these differentially abundant proteins comprised 116 proteins (41%) that are predicted targets of the selective autophagy proteins p62, LC3 and ATG16L1. Our integrative analysis revealed autophagy-mediated mechanisms that degrade key proteins in Paneth cell functions, such as exocytosis, apoptosis and DNA damage repair. Transcriptomic profiling of additional organoids confirmed that 90% of the observed changes upon autophagy alteration have effects at the protein level, not on gene expression. We performed further validation experiments showing differential lysozyme secretion, confirming our computationally inferred downregulation of exocytosis. Our observations could explain how protein-level alterations affect Paneth cell homeostatic functions upon autophagy impairment.This article has an associated First Person interview with the joint first authors of the paper.


Subject(s)
Autophagy , Intestines/physiology , Organoids/cytology , Organoids/metabolism , Paneth Cells/metabolism , Proteomics , Transcriptome/genetics , Animals , Autophagy-Related Proteins , Carrier Proteins/metabolism , Epithelial Cells/metabolism , Exocytosis , Female , Male , Mice, Inbred C57BL , Proteolysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL