Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Bioorg Med Chem ; 28(10): 115481, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32253095

ABSTRACT

Herein, we disclose a new series of TYK2/ JAK1 inhibitors based upon a 3.1.0 azabicyclic substituted pyrimidine scaffold. We illustrate the use of structure-based drug design for the initial design and subsequent optimization of this series of compounds. One advanced example 19 met program objectives for potency, selectivity and ADME, and demonstrated oral activity in the adjuvant-induced arthritis rat model.


Subject(s)
Arthritis, Experimental/drug therapy , Drug Design , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , TYK2 Kinase/antagonists & inhibitors , Animals , Arthritis, Experimental/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Janus Kinase 1/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Inbred Lew , Structure-Activity Relationship , TYK2 Kinase/metabolism
2.
ACS Comb Sci ; 22(1): 1-5, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31860283

ABSTRACT

An efficient approach to the parallel synthesis of benzimidazoles from anilines is described. Library approaches to vary the N1 and C2 vectors of benzimidazoles are well established; however, C4-C7 variation has traditionally relied on 1,2-dianiline building blocks, providing limited chemical space coverage. We have developed an amidine formation/oxidative cyclization sequence that enables anilines as a diversity set for benzimidazole C4-C7 SAR generation in parallel format. The amidine annulation was achieved using PIDA or Cu-mediated oxidation to access both N-H and N-alkyl benzimidazoles. This library protocol has now been utilized for analog production in four medicinal chemistry projects. Additionally, the synthesis of aza-benzimidazoles from aminopyridines was achieved via an analogous sequence.


Subject(s)
Benzimidazoles/chemical synthesis , Aniline Compounds/chemistry , Benzimidazoles/chemistry , Chemistry, Pharmaceutical/methods , Cyclization , Oxidation-Reduction , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship
3.
J Med Chem ; 63(22): 13561-13577, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32787094

ABSTRACT

Tyrosine kinase 2 (TYK2) is a member of the JAK kinase family that regulates signal transduction downstream of receptors for the IL-23/IL-12 pathways and type I interferon family, where it pairs with JAK2 or JAK1, respectively. On the basis of human genetic and emerging clinical data, a selective TYK2 inhibitor provides an opportunity to treat autoimmune diseases delivering a potentially differentiated clinical profile compared to currently approved JAK inhibitors. The discovery of an ATP-competitive pyrazolopyrazinyl series of TYK2 inhibitors was accomplished through computational and structurally enabled design starting from a known kinase hinge binding motif. With understanding of PK/PD relationships, a target profile balancing TYK2 potency and selectivity over off-target JAK2 was established. Lead optimization involved modulating potency, selectivity, and ADME properties which led to the identification of the clinical candidate PF-06826647 (22).


Subject(s)
Autoimmune Diseases/enzymology , Drug Discovery/methods , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , TYK2 Kinase/antagonists & inhibitors , Animals , Autoimmune Diseases/drug therapy , Humans , Mice , Mice, Transgenic , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Secondary , TYK2 Kinase/chemistry , TYK2 Kinase/metabolism
4.
J Org Chem ; 74(12): 4525-36, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19441779

ABSTRACT

We report the diastereoselective and chromatography-free syntheses of four 2-phenyl-6-alkyl-3-aminopiperidines. Ring construction was accomplished through a nitro-Mannich reaction linking a nitroketone and phenylmethanimine, followed by a ring-closure condensation. Relative stereocontrol was achieved between C-2 and C-3 by kinetic protonation of a nitronate or by equilibration of the nitro group under thermodynamic control. Stereocontrol at C-6 was accomplished by utilizing a variety of imine reduction methods. The C-2/C-6-cis stereochemistry was established via triacetoxyborohydride iminium ion reduction, whereas the trans relationship was set either by triethylsilane/TFA acyliminium ion reduction or by Lewis acid catalyzed imine reduction with lithium aluminum hydride.


Subject(s)
Ketones/chemistry , Nitro Compounds/chemistry , Piperidines/chemical synthesis , Benzene Derivatives/chemical synthesis , Kinetics , Stereoisomerism
5.
Bioorg Med Chem Lett ; 19(16): 4747-51, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19576766

ABSTRACT

The synthesis and SAR studies about the bicyclic amine, carbamate linker and aromatic ring of a 1,4-diazabicyclo[3.2.2]nonane phenyl carbamate series of alpha7 nAChR agonists is described. The development of the medicinal chemistry strategy and SAR which led to the identification of 5 and 7aa as subtype selective, high affinity alpha7 agonists as excellent leads for further evaluation is discussed, along with key physicochemical and pharmacokinetic data highlighting their lead potential.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Carbamates/chemical synthesis , Nicotinic Agonists/chemical synthesis , Phenylcarbamates/chemical synthesis , Receptors, Nicotinic/chemistry , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Carbamates/chemistry , Carbamates/pharmacokinetics , Cell Line , Humans , Male , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacokinetics , Phenylcarbamates/chemistry , Phenylcarbamates/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/metabolism , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
6.
Adv Mater ; 31(35): e1902955, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31268581

ABSTRACT

The next generation of flexible electronics will require highly stretchable and transparent electrodes, many of which consist of a relatively stiff metal network (or carbon materials) and an underlying soft substrate. Typically, such a stiff-soft bilayer suffers from wrinkling or folding when subjected to strains, causing high surface roughness and seriously deteriorated optical transparency. In this work, a network with a giant effective Poisson's ratio on a soft substrate is found to be under biaxial tension upon deformation, and thus does not wrinkle or fold, but maintains smooth surfaces and high transparency. Soft tactile sensors employing such network electrodes exhibit high transparency and low fatigue over many stretching cycles. Such a giant Poisson's ratio has the same effect in other systems. This work offers a new understanding of surface instabilities and a general strategy to prevent them not only in flexible electronics, but also in other materials and mechanical structures that require flat surfaces.

7.
J Med Chem ; 61(3): 1001-1018, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29293004

ABSTRACT

Computational modeling was used to direct the synthesis of analogs of previously reported phosphodiesterase 2A (PDE2A) inhibitor 1 with an imidazotriazine core to yield compounds of significantly enhanced potency. The analog PF-05180999 (30) was subsequently identified as a preclinical candidate targeting cognitive impairment associated with schizophrenia. Compound 30 demonstrated potent binding to PDE2A in brain tissue, dose responsive mouse brain cGMP increases, and reversal of N-methyl-d-aspartate (NMDA) antagonist-induced (MK-801, ketamine) effects in electrophysiology and working memory models in rats. Preclinical pharmacokinetics revealed unbound brain/unbound plasma levels approaching unity and good oral bioavailability resulting in an average concentration at steady state (Cav,ss) predicted human dose of 30 mg once daily (q.d.). Modeling of a modified release formulation suggested that 25 mg twice daily (b.i.d.) could maintain plasma levels of 30 at or above targeted efficacious plasma levels for 24 h, which became part of the human clinical plan.


Subject(s)
Brain/drug effects , Brain/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Animals , Biological Availability , Brain/physiology , Cyclic Nucleotide Phosphodiesterases, Type 2/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Inhibitory Concentration 50 , Memory, Short-Term/drug effects , Molecular Docking Simulation , Protein Conformation
8.
J Med Chem ; 61(19): 8597-8612, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30113844

ABSTRACT

Cytokine signaling is an important characteristic of autoimmune diseases. Many pro-inflammatory cytokines signal through the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway. JAK1 is important for the γ-common chain cytokines, interleukin (IL)-6, and type-I interferon (IFN) family, while TYK2 in addition to type-I IFN signaling also plays a role in IL-23 and IL-12 signaling. Intervention with monoclonal antibodies (mAbs) or JAK1 inhibitors has demonstrated efficacy in Phase III psoriasis, psoriatic arthritis, inflammatory bowel disease, and rheumatoid arthritis studies, leading to multiple drug approvals. We hypothesized that a dual JAK1/TYK2 inhibitor will provide additional efficacy, while managing risk by optimizing selectivity against JAK2 driven hematopoietic changes. Our program began with a conformationally constrained piperazinyl-pyrimidine Type 1 ATP site inhibitor, subsequent work led to the discovery of PF-06700841 (compound 23), which is in Phase II clinical development (NCT02969018, NCT02958865, NCT03395184, and NCT02974868).


Subject(s)
Antitubercular Agents/pharmacology , Arthritis, Experimental/prevention & control , Janus Kinase 1/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , TYK2 Kinase/antagonists & inhibitors , Tuberculosis/complications , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/microbiology , Female , Molecular Structure , Rats , Rats, Inbred Lew , Tuberculosis/microbiology
9.
J Med Chem ; 61(3): 1130-1152, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29298069

ABSTRACT

Janus kinases (JAKs) are intracellular tyrosine kinases that mediate the signaling of numerous cytokines and growth factors involved in the regulation of immunity, inflammation, and hematopoiesis. As JAK1 pairs with JAK2, JAK3, and TYK2, a JAK1-selective inhibitor would be expected to inhibit many cytokines involved in inflammation and immune function while avoiding inhibition of the JAK2 homodimer regulating erythropoietin and thrombopoietin signaling. Our efforts began with tofacitinib, an oral JAK inhibitor approved for the treatment of rheumatoid arthritis. Through modification of the 3-aminopiperidine linker in tofacitinib, we discovered highly selective JAK1 inhibitors with nanomolar potency in a human whole blood assay. Improvements in JAK1 potency and selectivity were achieved via structural modifications suggested by X-ray crystallographic analysis. After demonstrating efficacy in a rat adjuvant-induced arthritis (rAIA) model, PF-04965842 (25) was nominated as a clinical candidate for the treatment of JAK1-mediated autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Cyclobutanes/pharmacology , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Sulfonamides/pharmacology , Animals , Arthritis, Experimental/drug therapy , Cyclobutanes/chemistry , Cyclobutanes/pharmacokinetics , Cyclobutanes/therapeutic use , Dogs , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , Rats , Substrate Specificity , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Tissue Distribution
10.
J Med Chem ; 60(13): 5673-5698, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28574706

ABSTRACT

Phosphodiesterase 2A (PDE2A) inhibitors have been reported to demonstrate in vivo activity in preclinical models of cognition. To more fully explore the biology of PDE2A inhibition, we sought to identify potent PDE2A inhibitors with improved brain penetration as compared to current literature compounds. Applying estimated human dose calculations while simultaneously leveraging synthetically enabled chemistry and structure-based drug design has resulted in a highly potent, selective, brain penetrant compound 71 (PF-05085727) that effects in vivo biochemical changes commensurate with PDE2A inhibition along with behavioral and electrophysiological reversal of the effects of NMDA antagonists in rodents. This data supports the ability of PDE2A inhibitors to potentiate NMDA signaling and their further development for clinical cognition indications.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Drug Design , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Crystallography, X-Ray , Cyclic Nucleotide Phosphodiesterases, Type 2/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dogs , Haplorhini , Humans , Mice , Molecular Docking Simulation , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/pharmacokinetics , Rats
11.
J Med Chem ; 48(10): 3474-7, 2005 May 19.
Article in English | MEDLINE | ID: mdl-15887955

ABSTRACT

Herein we describe a novel series of compounds from which varenicline (1, 6,7,8,9-tetrahydro-6,10-methano-6H-pyrazino[2,3-h][3]benzazepine) has been identified for smoking cessation. Neuronal nicotinic acetylcholine receptors (nAChRs) mediate the dependence-producing effects of nicotine. We have pursued alpha4beta2 nicotinic receptor partial agonists to inhibit dopaminergic activation produced by smoking while simultaneously providing relief from the craving and withdrawal syndrome that accompanies cessation attempts. Varenicline displays high alpha4beta2 nAChR affinity and the desired in vivo dopaminergic profile.


Subject(s)
Benzazepines/chemical synthesis , Nicotinic Agonists/chemical synthesis , Quinoxalines/chemical synthesis , Receptors, Nicotinic/drug effects , Smoking Cessation/methods , Animals , Benzazepines/chemistry , Benzazepines/pharmacology , Cell Line , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Humans , In Vitro Techniques , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Oocytes/drug effects , Oocytes/physiology , Quinoxalines/chemistry , Quinoxalines/pharmacology , Radioligand Assay , Rats , Receptors, Nicotinic/physiology , Varenicline , Xenopus laevis
12.
J Med Chem ; 56(17): 6819-28, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23919824

ABSTRACT

Casein kinase 1δ (CK1δ) and 1ε (CK1ε) are believed to be necessary enzymes for the regulation of circadian rhythms in all mammals. On the basis of our previously published work demonstrating a CK1ε-preferring compound to be an ineffective circadian clock modulator, we have synthesized a series of pyrazole-substitued pyridine inhibitors, selective for the CK1δ isoform. Additionally, using structure-based drug design, we have been able to exploit differences in the hinge region between CK1δ and p38 to find selective inhibitors that have minimal p38 activity. The SAR, brain exposure, and the effect of these inhibitors on mouse circadian rhythms are described. The in vivo evaluation of these inhibitors demonstrates that selective inhibition of CK1δ at sufficient central exposure levels is capable of modulating circadian rhythms.


Subject(s)
Casein Kinase Idelta/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Proteins/chemistry , Ligands , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular
14.
J Appl Physiol (1985) ; 108(1): 7-13, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19779156

ABSTRACT

The effect of insulin resistance (IR) on the adaptation of skeletal muscle loading is not well understood. Here we examine whether the soleus muscles of the lean Zucker (LZ) and insulin-resistant obese Zucker (OZ) rat exhibit differences in their ability to undergo muscle hypertrophy following 8 wk of mechanical overload. Four-week-old male LZ (n = 5) and OZ (n = 5) rats underwent unilateral surgical ablation of the gastrocnemius muscle while the contralateral hindlimb was used as an internal control. Mechanical overload increased soleus muscle wet weight (LZ 57% and OZ 33%, respectively; P < 0.05) and average type 1 fiber cross-sectional area (LZ 32% and OZ 5%, respectively; P < 0.05) in LZ and OZ rats, while the magnitude of these increases was greater in the LZ animals (P < 0.05). The reduced degree of muscle hypertrophy observed in the OZ animals was associated with decreases in the ability of the OZ soleus muscle to phosphorylate p70s6k(Thr 389) and mTOR, while phosphorylation of p70s6k(Thr 389) was increased in the LZ overloaded soleus by 83% (P < 0.05). The amount of Tuberin/TSC2 phosphorylation, an inhibitor of mTOR, was unchanged in the LZ soleus after overload while it was increased (68.3%, P < 0.05) in OZ animals. Conversely, AMPK phosphorylation was decreased in the LZ (-22.77%, P < 0.05) but increased (57%, P < 0.05) in the OZ soleus with overload. Taken together, these data suggest that IR or other related comorbidities may impair the ability of the soleus to activate mTOR signaling and undergo load-induced muscle hypertrophy.


Subject(s)
Cumulative Trauma Disorders/physiopathology , Insulin Resistance , Muscle Fibers, Slow-Twitch/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Obesity/physiopathology , Animals , Cumulative Trauma Disorders/pathology , Hypertrophy/pathology , Hypertrophy/physiopathology , Male , Muscle, Skeletal/injuries , Rats , Rats, Zucker
15.
Bioorg Med Chem Lett ; 15(12): 2974-9, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15908213

ABSTRACT

The preparation and biological activity of analogs of (-)-cytisine, an alpha4beta2 nicotinic receptor partial agonist, are discussed. All-carbon-containing phenyl ring replacements of the pyridone ring system, generated via Heck cyclization protocols, exhibited weaker affinity and lower efficacy partial agonist profiles relative to (-)-cytisine. In vivo, selected compounds exhibit lower efficacy partial agonist profiles than that of (-)-cytisine.


Subject(s)
Alkaloids/pharmacology , Carbon/chemistry , Dopamine/metabolism , Nicotinic Agonists/pharmacology , Nucleus Accumbens/drug effects , Receptors, Nicotinic/chemistry , Alkaloids/chemistry , Animals , Azocines/chemistry , Azocines/pharmacology , Nicotinic Agonists/chemistry , Quinolizines/chemistry , Quinolizines/pharmacology , Rats , Receptors, Nicotinic/metabolism , Smoking Cessation , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 15(22): 4889-97, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16171993

ABSTRACT

3,5-Bicyclic aryl piperidines are a new class of high-affinity alpha4beta2 nicotinic receptor agents. We have sought nicotinic receptor partial agonists of the alpha4beta2 nicotinic acetylcholine receptor for smoking cessation, and a number of compounds fulfill potency, selectivity, and efficacy requirements in vitro. In vivo, selected agents demonstrate potent partial agonist efficacy on the mesolimbic dopamine system, a key measure of therapeutic potential for smoking cessation.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Receptors, Nicotinic/metabolism , Smoking Cessation/methods , Animals , Cyclization , Molecular Structure , Piperidines/classification , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL