Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Langmuir ; 33(49): 13903-13912, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29125298

ABSTRACT

Surface-attached polydicyclopentadiene (pDCPD) films were prepared on gold and silicon substrates via surface-initiated ring-opening metathesis polymerization (SI-ROMP) of dicyclopentadiene (DCPD). The films were grown utilizing monomer in both the vapor phase and the solution phase with the former process exhibiting rapid kinetics, producing ∼400-nm-thick pDCPD films in less than 1 min of polymerization. No significant differences in thickness were observed for films grown from monomer in the vapor phase with the different isomers (exo and endo) of DCPD. Decane was used as an inert additive to control the concentration of DCPD monomer in the vapor phase enabling the preparation of pDCPD films with thickness ranging from tens of nanometers to hundreds of nanometers. The thickness of pDCPD films polymerized using monomer in the vapor phase was enhanced by the presence of a rinse solvent on the surface of the ROMP-active gold substrates. The choice of ROMP catalyst was found to be an important consideration when SI-ROMP was conducted on different substrates. Electrochemical impedance spectroscopy was used to reveal that the films provide effective barriers to the diffusion of aqueous ions in excess of 1 × 106 Ω·cm2. The mechanical properties of the surface-tethered pDCPD films were quantified with AFM PeakForce quantitative nanomechanical mapping (QNM) with a measured reduced Young's modulus (Er) of 15 GPa. The measured Er was greater than that of a non-cross-linked surface-tethered polymer, pNB, indicating that the pDCPD films are stiffer.

2.
Langmuir ; 32(10): 2348-59, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26885941

ABSTRACT

Chemisorbed alkylsilane monolayer coatings have been shown to possess favorable lubrication properties; however, film degradation prevents the widespread use of these materials as lubricants in micro- and nanoelectromechanical systems (MEMS/NEMS). In this work, molecular dynamics (MD) simulations are used to provide insight into the conditions that promote the degradation and wear of these materials. This is achieved through removal of interfacial chain-substrate bonds during shear and the examination of the mobility of the resulting free, unbound chains. Specific focus is given to the effects of surface morphology, which has been shown previously to strongly influence frictional forces in monolayer systems. In-plane order of chain attachments is shown to lead to pressure-induced orientational ordering of monolayers, promoting film stability. This behavior is lost as nonideality is introduced into the substrate and chain patterning on the surface becomes disordered. The presence of surface roughness is found to reduce film stability, with localization of wear observed for chain attachment sites nearest the interface of contact. The influence of substrate nonideality on monolayer degradation is shown to diminish as chain length is increased.

SELECTION OF CITATIONS
SEARCH DETAIL