ABSTRACT
A series of measurements have been performed at Hill Air Force Base to evaluate real-time instruments for measurements of black carbon aerosol and particle-bound PAHs emitted from spark and ignition compression vehicles. Vehicles were operated at idle or fast idle in one set of measurements and were placed under load on a dynamometer during the second series. Photoacoustic instruments were developed that operated at a wavelength of 1047 nm where gaseous interference is negligible, although sensitivity to black carbon is good. Compact, efficient, solid-state lasers with direct electronic modulation capabilities are used in these instruments. Black carbon measurements are compared with samples collected on quartz fiber filters that were evaluated using the thermal optical reflectance method. A measure of total particle-bound PAH was provided by photoelectric aerosol sensors (PAS) and is evaluated against a sum of PAH mass concentrations obtained with a filter-denuder combination. The PAS had to be operated with a dilution system held at approximately 150 degrees C for most of the source sampling to prevent spurious behavior, thus perhaps compromising detection of lighter PAHs. PA and PAS measurements were found to have a high degree of correlation, perhaps suggesting that the PAS can respond to the polycyclic nature of the black carbon aerosol. The PAS to PA ratio for ambient air in Fresno, CA is 3.7 times as large in winter than in summer months, suggesting that the PAS clearly does respond to compounds other than BC when the instrument is used without the heated inlet.
Subject(s)
Air Pollutants/analysis , Carbon/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis , Acoustics , Aerosols/analysis , California , Carcinogens , Gasoline , Photochemistry , Seasons , Sensitivity and SpecificityABSTRACT
Enhancement in backscattering known as glory scattering results from geometric and material properties of spherically symmetric scatterers. The wave-front shape near the spherical scatterer is locally a circular torus. Radiation from a toroidal wave front is axially focused on the backward-directed axis. It is shown that the axial point caustic unfolds to an astroid caustic as the scatterer's shape changes from spherical to slightly spheroidal. The wave front pertinent for slightly spheroidal scatterers was modeled as a toroidal wave front with a superimposed harmonic angular perturbation. Experimental observations are displayed for cross-polarized backscattering by freely vertical rising, slightly oblate spheroidal air bubbles in water illuminated by a horizontally propagating laser beam. These patterns were recorded with a camera for two different incident-beam polarization directions relative to the axis of rotational symmetry of the bubble. Angular scattering patterns were also computed using a perturbation analysis based on use of the harmonically perturbed toroidal wave front and physical optics. Bubble oblateness was estimated from features of the angular scattering pattern and from hydrodynamic relations.
ABSTRACT
A novel two-beam interferometer for the measurement of a refractive index or its induced changes is described. This interferometer consists of only two optical elements and is largely insensitive to their movement. A laboratory prototype has been built. It uses a polarized version of the folded Jamin interferometer to allow for convenient phase adjustment.
ABSTRACT
The topical meeting on light and color in the open air was held 9-12 February 1997 in Santa Fe, New Mexico. The series of papers that follows represents the fruition of this meeting, revealing the range of current scientific explorations into the play of light and color in nature.
ABSTRACT
Infrared extinction optical depth (500-5000 cm(-1)) has been measured with a Fourier transform infrared spectrometer for clouds produced with an ultrasonic nebulizer. Direct measurement of the cloud droplet size spectra agree with size spectra retrieved from inversion of the extinction measurements. Both indicate that the range of droplet sizes is 1-14 mum. The retrieval was accomplished with an iterative algorithm that simultaneously obtains water-vapor concentration. The basis set of droplet extinction functions are computed once by using numerical integration of the Lorenz-Mie theory over narrow size bins, and a measured water-vapor extinction curve was used. Extinction and size spectra are measured and computed for both steady-state and dissipating clouds. It is demonstrated that anomalous diffraction theory produces relatively poor droplet size and synthetic extinction spectra and that extinction measurements are helpful in assessing the validity of various theories. Calculations of cloud liquid-water content from retrieved size distributions agree with a parameterization based on optical-depth measurements at a wave number of 906 cm(-1) for clouds that satisfy the size spectral range assumptions of the parameterization. Significance of droplet and vapor contribution to the total optical depth is used to evaluate the reliability of spectral inversions.
ABSTRACT
Extinction measurements with a laser diode (0.685 µm) and a Fourier transform infrared spectrometer (2-18 µm) were performed on laboratory ice clouds (5 µm ≤ D ≤ 70 µm) grown at a variety of temperatures, and thus at a variety of crystal habits and average projected crystal area. Ice clouds were grown by nucleation of a supercooled water droplet cloud with a rod cooled with liquid nitrogen. The ice crystals observed were mainly plates and dendrites at the coldest temperatures (≈-15 °C) and were mainly columns and needles at warmer temperatures (≈-5 °C). The crystals were imaged with both a novel microscope equipped with a video camera and a heated glass slide and a continuously running Formvar replicator. The IR spectral optical-depth measurements reveal a narrow (0.5-µm-width) extinction minimum at 2.84 µm and a wider (3-µm-width) minimum at 10.5 µm. These partial windows are associated with wavelengths where the real part of the index of refraction for bulk ice has a relative minimum so that extinction is primarily due to absorption rather than scattering (i.e., the Christiansen effect). Bulk ice has absorption maxima near the window wavelengths. IR extinction efficiency has a noticeable wavelength dependence on the average projected crystal area and therefore on the temperaturedependent crystal properties. The average-size parameters in the visible for different temperatures ranged from 64 to 128, and in the IR they ranged from 2.5 to 44. The extinction efficiency and the single-scatter albedo for ice spheres as computed from Mie scattering also show evidence of the Christiansen effect.
ABSTRACT
A general method is developed to formulate extinction and absorption efficiency for nonspherical particles at arbitrary and random orientations by use of anomalous diffraction theory (ADT). An ADT for finite circular cylinders is evaluated as an example. Existing ADT's for infinite cylinders at arbitrary orientations and for finite cylinders at the normal incidence are shown to be special cases of the new formulation. ADT solutions for finite cylinders are shown to approach the rigorous T-matrix results when the refractive indices approach unity. The importance of some physical processes that are neglected in the ADT approximation are evaluated by comparisons between ADT and rigorous calculations for different particle geometries. For spheres, van de Hulst's ADT and Mie theory are used, whereas the ADT that we present and T-matrix calculations are used for cylinders of different diameter-to-length ratios. The results show that the differences in extinction between ADT and exact solutions generally decrease with nonsphericity. A similar decrease occurs for absorption at wavelengths of relatively strong absorption. The influence of complex refractive index is evaluated. Our results suggest that ADT may provide a useful approximation in parameterization and remote sensing of cirrus clouds in the Christiansen bands where the real part of the refractive index approaches unity and/or where relative absorption is strong.
ABSTRACT
A vague glory display was photographed over central Utah from an airplane beginning its descent through a cirrus cloud layer with an estimated cloud top temperature of -45 and -55 degrees C. Photographic analysis reveals a single reddish-brown ring of 2.5-3.0 degrees radius around the antisolar point, although a second ring appeared visually to have been present over the brief observation period. Mie and approximate nonspherical theory scattering simulations predict a population of particles with modal diameters between 9 and 15 mum. Although it is concluded that multiple-ringed glories can be accounted for only through the backscattering of light from particles that are strictly spherical in shape, the poor glory colorization in this case could imply the presence of slightly aspherical ice particles. The location of this display over mountainous terrain suggests that it was generated by an orographic wave cloud, which we speculate produced numerous frozen cloud droplets that only gradually took on crystalline characteristics during growth.
ABSTRACT
Emission measurements were obtained for a variety of military vehicles at Hill Air Force Base (Ogden, UT) in November 2000 as part of a Strategic Environmental Research and Development Program. Aircraft ground support equipment vehicles using gasoline, diesel, and JP8 fuels were tested using chassis dynamometers under predetermined load. The exhaust from the tested vehicle was passed to a dilution tunnel where it was diluted 30-40 times and collected using Micro-Orifice Uniform Deposit Impactor (MOUDI) fitted with aluminum substrates, an XAD-coated annular denuder, and a filter followed by a solid adsorbent. All MOUDI substrates were analyzed for mass and for organic and elemental (EC) carbon by the thermal/optical reflectance method and for polycyclic aromatic hydrocarbons (PAHs) by GC/MS. Black carbon was measured with a photoacoustic instrument. The denuder and filter/solid adsorbent samples were analyzed for semivolatile PAH. Overall, there is more mass and higher EC contribution when the vehicle is run under higher load in comparison with the low load. However, older vehicles generally show more mass and EC emissions than newer vehicles, and there is a shift toward smaller particle sizes for the low load, which is most pronounced for newer vehicles. The particle-associated semivolatile PAHs and nonvolatile four-through six-ring PAHs are present predominantly on the submicron particles collected on MOUDI stages 0.1-0.18, 0.18-0.32, and 0.32-0.56 microm. For the low-load runs, the distribution of PAHs seems to be shifted toward smaller size particles. The gas-particle phase distribution of semivolatile PAHs depends also on the engine loading. For idle, not only are the more volatile two- and three-ring PAHs, from naphthalene to dimethylphenanthrenes, retained on the denuder portion, but also less volatile four-ring PAHs, such as fluoranthene and pyrene, are retained by the denuder at the 80-90% range, which implies that they are present predominantly in the gas phase. In contrast, for engines under high loads, a much larger portion of three- and four-ring PAHs are partitioned to the particle phase.
Subject(s)
Air Pollutants/analysis , Gasoline/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Equipment Design , Motor Vehicles , Particle Size , VolatilizationABSTRACT
The measurement of elemental carbon (EC) and organic carbon (OC) mass for particles emitted by diesel vehicles is currently accomplished using particle collection on filters, followed by analysis using the thermal/optical reflectance carbon analysis method (TOR) or one of its variations. Such filter methods limit time resolution to a minimum of several minutes, making it impossible to study emissions during transient operating conditions. Testing of five different measurement methods has demonstrated that fast response measurement of diesel exhaust particulate EC and OC concentrations, consistent with TOR filter measurements, is feasible using existing technology. EC mass concentrations are best measured through determination of particulate light absorption with a photoacoustic instrument or determination of light extinction with a smoke meter. The photoacoustic instrument has the better dynamic range and sensitivity, whereas the smoke meter is a simpler instrument. Fast response OC measurements cannot be made with any single instrument tested. However, a combination of real time weighing as implemented in the tapered element oscillating microbalance with the photoacoustic instrument has been shown to be capable of determining OC concentrations with good time response. The addition of a nephelometer to the OC measurement could potentially improve time resolution, freedom from interferences, and sensitivity.
Subject(s)
Carbon/analysis , Environmental Monitoring/instrumentation , Vehicle Emissions/analysis , Environmental Monitoring/methods , Filtration , Nephelometry and Turbidimetry , Optics and Photonics , Organic Chemicals/analysis , Particle Size , Sensitivity and SpecificityABSTRACT
The measurement of diesel vehicle exhaust particulate mass is currently accomplished using filter collection methods according to the Code of Federal Regulations (CFR). Such filter methods limit time resolution to a minimum of several minutes, making it impossible to study emissions during transient operating conditions. Extensive testing of five different measurement methods has demonstrated that fast response measurements of diesel exhaust particulate mass concentrations, consistent with CFR filter measurements, are feasible using existing technology. The measurement principles of choice are the real time weighing of exhaust samples as implemented in the tapered element oscillating microbalance (TEOM) and the measurement of light scattering from exhaust particles as implemented in the DustTrak nephelometer. Each of these two instruments has distinctive strengths. The TEOM excels in the area of constant calibration, independent of vehicle. For the DustTrak, this calibration varies by vehicle. On the other hand, the DustTrak has an excellent signal-to-noise ratio, freedom from interference due to other exhaust sample properties, good time resolution, and simplicity. The strengths of the two measurement methods are complimentary, so an obvious suggestion is to integrate them. The nephelometer would obtain a fast response signal, with near real time calibration provided by the microbalance.