Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Immunity ; 57(2): 303-318.e6, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38309273

ABSTRACT

Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.


Subject(s)
Glucose Intolerance , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Amphiregulin/genetics , Amphiregulin/metabolism , ErbB Receptors/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , T-Lymphocytes, Regulatory/metabolism
2.
Cell ; 162(5): 1078-89, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26317471

ABSTRACT

Regulatory T (Treg) cells suppress immune responses to a broad range of non-microbial and microbial antigens and indirectly limit immune inflammation-inflicted tissue damage by employing multiple mechanisms of suppression. Here, we demonstrate that selective Treg cell deficiency in amphiregulin leads to severe acute lung damage and decreased blood oxygen concentration during influenza virus infection without any measureable alterations in Treg cell suppressor function, antiviral immune responses, or viral load. This tissue repair modality is mobilized in Treg cells in response to inflammatory mediator IL-18 or alarmin IL-33, but not by TCR signaling that is required for suppressor function. These results suggest that, during infectious lung injury, Treg cells have a major direct and non-redundant role in tissue repair and maintenance-distinct from their role in suppression of immune responses and inflammation-and that these two essential Treg cell functions are invoked by separable cues.


Subject(s)
Influenza, Human/immunology , Lung/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Amphiregulin/genetics , Animals , Autoimmunity , Disease Models, Animal , Humans , Influenza, Human/pathology , Lung/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Suppressor Factors, Immunologic/analysis , T-Lymphocytes, Regulatory/chemistry
3.
Nature ; 610(7931): 356-365, 2022 10.
Article in English | MEDLINE | ID: mdl-36198802

ABSTRACT

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular , Hepatic Stellate Cells , Liver Neoplasms , Animals , Carcinogenesis/pathology , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Collagen Type I/metabolism , Discoidin Domain Receptor 1/metabolism , Disease Progression , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocyte Growth Factor/metabolism , Hepatocytes , Humans , Liver Cirrhosis/complications , Liver Neoplasms/pathology , Mice , Myofibroblasts/pathology
4.
Immunity ; 49(2): 201-203, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30134197

ABSTRACT

Intestinal Treg cells suppress colitis; yet the mechanisms behind the intricate pathways involved in this process remain largely unknown. In this issue of Immunity,Bauché et al. (2018) show that Treg cells engage MHCII on CX3CR1+ macrophages via LAG3. This indirectly reduces IL-22 mediated colonic inflammation.


Subject(s)
Colitis , T-Lymphocytes, Regulatory , CX3C Chemokine Receptor 1 , Humans , Interleukin-23 , Intestines , Macrophages
5.
Cell ; 144(5): 675-88, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21376231

ABSTRACT

Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.


Subject(s)
Host-Pathogen Interactions , Immunity, Innate , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Signal Transduction , Toll-Like Receptors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Humans , Macrophages/immunology , Macrophages/microbiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Toll-Like Receptors/immunology
6.
Gastroenterology ; 162(3): 890-906, 2022 03.
Article in English | MEDLINE | ID: mdl-34883119

ABSTRACT

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/physiology , Carcinogenesis/pathology , Cell Lineage , Colorectal Neoplasms/pathology , Mesenchymal Stem Cells/physiology , Actins/genetics , Actins/metabolism , Adult , Aged , Aged, 80 and over , Animals , CD146 Antigen/genetics , CD146 Antigen/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Differentiation , Cell Proliferation , Colorectal Neoplasms/metabolism , Disease Models, Animal , Female , Humans , Intestinal Mucosa/pathology , Ki-67 Antigen/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Organoids/pathology , Organoids/physiology , Prognosis , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Sequence Analysis, RNA , Survival Rate , Tumor Microenvironment
7.
Immunity ; 35(5): 721-32, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22078797

ABSTRACT

Recognition of nucleic acids as a signature of infection by Toll-like receptors (TLRs) 7 and 9 exposes the host to potential self-recognition and autoimmunity. It has been proposed that intracellular compartmentalization is largely responsible for reliable self versus nonself discrimination by these receptors. We have previously shown that TLR9 and TLR7 require processing prior to activation, which may further reinforce receptor compartmentalization and tolerance to self, yet this possibility remains untested. Here we report that residues within the TLR9 transmembrane (TM) region conferred the requirement for ectodomain proteolysis. TLR9 TM mutants responded to extracellular DNA, and mice expressing such receptors died from systemic inflammation and anemia. This inflammatory disease did not require lymphocytes and appeared to require recognition of self-DNA by dendritic cells. To our knowledge, these results provide the first demonstration that TLR-intrinsic mutations can lead to a break in tolerance.


Subject(s)
Inflammation/genetics , Inflammation/immunology , Mutation , Toll-Like Receptor 9/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Autoimmunity/genetics , Autoimmunity/immunology , B-Lymphocytes/immunology , Cell Membrane/metabolism , Dendritic Cells/immunology , Gene Expression , Genes, Lethal , HEK293 Cells , Humans , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary/genetics , Protein Transport , Proteolysis , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/immunology , Signal Transduction , T-Lymphocytes/immunology , Toll-Like Receptor 9/chemistry , Toll-Like Receptor 9/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Nature ; 504(7480): 451-5, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24226773

ABSTRACT

Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.


Subject(s)
Butyrates/metabolism , Cell Differentiation , Intestinal Mucosa/metabolism , Intestines/microbiology , Symbiosis , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Acetylation , Animals , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Enhancer Elements, Genetic/genetics , Fermentation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Histone Deacetylases/metabolism , Inflammation Mediators/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestines/cytology , Intestines/immunology , Introns/genetics , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Starch/metabolism , T-Lymphocytes, Regulatory/immunology
9.
Biol Blood Marrow Transplant ; 21(8): 1373-83, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25977230

ABSTRACT

The relationship between intestinal microbiota composition and acute graft-versus-host disease (GVHD) after allogeneic blood/marrow transplantation (allo-BMT) is not well understood. Intestinal bacteria have long been thought to contribute to GVHD pathophysiology, but recent animal studies in nontransplant settings have found that anti-inflammatory effects are mediated by certain subpopulations of intestinal commensals. Hypothesizing that a more nuanced relationship may exist between the intestinal bacteria and GVHD, we evaluated the fecal bacterial composition of 64 patients 12 days after BMT. We found that increased bacterial diversity was associated with reduced GVHD-related mortality. Furthermore, harboring increased amounts of bacteria belonging to the genus Blautia was associated with reduced GVHD lethality in this cohort and was confirmed in another independent cohort of 51 patients from the same institution. Blautia abundance was also associated with improved overall survival. We evaluated the abundance of Blautia with respect to clinical factors and found that loss of Blautia was associated with treatment with antibiotics that inhibit anaerobic bacteria and receiving total parenteral nutrition for longer durations. We conclude that increased abundance of commensal bacteria belonging to the Blautia genus is associated with reduced lethal GVHD and improved overall survival.


Subject(s)
Bacteria/metabolism , Graft vs Host Disease/mortality , Intestines/microbiology , Cohort Studies , Female , Humans , Intestinal Mucosa/metabolism , Male , Risk Factors , Survival Analysis
10.
J Vis Exp ; (204)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38372353

ABSTRACT

Engineered cell therapies utilizing chimeric antigen receptor (CAR)-T cells have achieved remarkable effectiveness in individuals with hematological malignancies and are presently undergoing development for the treatment of diverse solid tumors. So far, the preliminary evaluation of novel CAR-T cell products has predominantly taken place in xenograft tumor models using immunodeficient mice. This approach is chosen to facilitate the successful engraftment of human CAR-T cells in the experimental setting. However, syngeneic mouse models, in which tumors and CAR-T cells are derived from the same mouse strain, allow evaluation of new CAR technologies in the context of a functional immune system and comprehensive tumor microenvironment (TME). The protocol described here aims to streamline the process of mouse CAR-T cell generation by presenting standardized methods for retroviral transduction and ex vivo T cell culture. The methods described in this protocol can be applied to other CAR constructs beyond the ones used in this study to enable routine evaluation of new CAR technologies in immune-competent systems.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Immunotherapy, Adoptive/methods , T-Lymphocytes , Neoplasms/therapy , Tumor Microenvironment , Receptors, Antigen, T-Cell/genetics
11.
J Exp Med ; 221(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38668758

ABSTRACT

Regulatory T (Treg) cells are classically known for their critical immunosuppressive functions that support peripheral tolerance. More recent work has demonstrated that Treg cells produce pro-repair mediators independent of their immunosuppressive function, a process that is critical to repair and regeneration in response to numerous tissue insults. These factors act on resident parenchymal and structural cells to initiate repair in a tissue-specific context. This review examines interactions between Treg cells and tissue-resident non-immune cells-in the context of tissue repair, fibrosis, and cancer-and discusses areas for future exploration.


Subject(s)
Cell Communication , Regeneration , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Humans , Animals , Regeneration/physiology , Cell Communication/immunology , Wound Healing/immunology , Fibrosis , Neoplasms/immunology , Neoplasms/pathology
12.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712053

ABSTRACT

Amphiregulin (Areg), a growth factor produced by regulatory T (Treg) cells to facilitate tissue repair/regeneration, contains a heparan sulfate (HS) binding domain. How HS, a highly sulfated glycan subtype that alters growth factor signaling, influences Areg repair/regeneration functions is unclear. Here we report that inhibition of HS in various cell lines and primary lung mesenchymal cells (LMC) qualitatively alters downstream signaling and highlights the existence of HS-dependent vs. -independent Areg transcriptional signatures. Utilizing a panel of cell lines with targeted deletions in HS synthesis-related genes, we found that the presence of the glypican family of heparan sulfate proteoglycans is critical for Areg signaling and confirmed this dependency in primary LMC by siRNA-mediated knockdown. Furthermore, in the context of influenza A (IAV) infection in vivo , we found that an Areg-responsive subset of reparative LMC upregulate glypican-4 and HS. Conditional deletion of HS primarily within this LMC subset resulted in reduced blood oxygen saturation following infection with IAV, with no changes in viral load. Finally, we found that co-culture of HS-knockout LMC with IAV-induced Treg cells results in reduced LMC responses. Collectively, this study reveals the essentiality of HS on a specific lung mesenchymal population as a mediator of Treg cell-derived Areg reparative signaling during IAV infection.

13.
Nat Commun ; 15(1): 646, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245513

ABSTRACT

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.


Subject(s)
Adenoma , Colorectal Neoplasms , Animals , Humans , Mice , Adenoma/diagnosis , Adenoma/therapy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Escherichia coli/genetics , Prospective Studies , Salicylates , Double-Blind Method
14.
Eur J Cancer ; 187: 58-64, 2023 07.
Article in English | MEDLINE | ID: mdl-37116288

ABSTRACT

Bacillus Calmette-Guerin (BCG) is a live attenuated Mycobacterium bovis strain, originally developed as a vaccine against tuberculosis. It is also the only bacterial cancer therapy approved by the US Food & Drug Administration for clinical use. BCG is delivered in the bladder, shortly after tumour resection, for patients with high-risk non-muscle invasive bladder cancer (NMIBC). Modulating mucosal immunity by exposing the urothelium to intravesical BCG has been the main therapeutic strategy for high-risk NMIBC over the last three decades. Thus, BCG provides a benchmark for the clinical development of bacteria-or other live attenuated pathogens-as cancer therapy. Currently, a myriad of immuno-oncology compounds is under clinical evaluation in BCG-unresponsive and BCG-naïve patients as an alternative therapy in the context of worldwide BCG shortages. For patients with non-metastatic muscle-invasive bladder cancer (MIBC), studies investigating neoadjuvant immunotherapy with either anti-PD-1/PD-L1 monoclonal antibodies in monotherapy or in combination with anti-CTLA-4 monoclonal antibodies have shown overall efficacy and acceptable safety profiles prior to radical cystectomy. Emerging clinical investigations are testing synergistic approaches by combining intravesical delivery of drugs with systemic immune checkpoint blockades in the neoadjuvant setting for patients with MIBC. Such novel strategy aims to prime a local anti-tumour immunity and reduce distant metastatic relapses by enhancing a systemic adaptive anti-tumour immune response. Here, we present and discuss some of the most promising clinical trials developing such novel therapeutic approaches.


Subject(s)
BCG Vaccine , Urinary Bladder Neoplasms , Humans , BCG Vaccine/therapeutic use , Neoadjuvant Therapy , Immunity, Mucosal , Neoplasm Recurrence, Local/drug therapy , Adjuvants, Immunologic/therapeutic use , Urinary Bladder Neoplasms/drug therapy , Immunotherapy , Drug Development , Neoplasm Invasiveness
15.
J Exp Med ; 220(3)2023 03 06.
Article in English | MEDLINE | ID: mdl-36534084

ABSTRACT

Following respiratory viral infection, regeneration of the epithelial barrier is required to preserve lung function and prevent secondary infections. Lung regulatory T (Treg) cells are critical for maintaining blood oxygenation following influenza virus infection through production of the EGFR ligand amphiregulin (Areg); however, how Treg cells engage with progenitors within the alveolar niche is unknown. Here, we describe local interactions between Treg cells and an Areg-responsive population of Col14a1+EGFR+ lung mesenchymal cells that mediate type II alveolar epithelial (AT2) cell-mediated regeneration following influenza virus infection. We propose a mechanism whereby Treg cells are deployed to sites of damage and provide pro-survival cues that support mesenchymal programming of the alveolar niche. In the absence of fibroblast EGFR signaling, we observe impaired AT2 proliferation and disrupted lung remodeling following viral clearance, uncovering a crucial immune/mesenchymal/epithelial network that guides alveolar regeneration.


Subject(s)
Influenza, Human , T-Lymphocytes, Regulatory , Humans , Amphiregulin , ErbB Receptors , Lung
16.
Cell Rep ; 42(3): 112135, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36840944

ABSTRACT

Micronutrient deficiency is a major cause of disease throughout the world. Yet, how perturbations influence the immune-microbiome interface remains poorly understood. Here, we report that loss of dietary tryptophan (Trp) reshapes intestinal microbial communities, including the depletion of probiotic L. reuteri, drives transcriptional changes to immune response genes in the intestinal ileum, and reshapes the regulatory T cell (Treg) compartment. Dietary Trp deficiency promotes expansion of RORγt+ Treg cells and the loss of Gata3+ Tregs in a microbiota-dependent manner. In the absence of dietary Trp, provision of the AhR ligand indole-3-carbinol is sufficient to restore the Treg compartment. Together, these data show that dietary Trp deficiency perturbs the interaction between the host and its bacterial symbionts to regulate Treg homeostasis via the deprivation of bacterially derived Trp metabolites. Our findings highlight an essential role for immune-microbiome crosstalk as a key homeostatic regulator during nutrient deficiency.


Subject(s)
Microbiota , T-Lymphocytes, Regulatory , Tryptophan/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3 , Homeostasis , Receptors, Aryl Hydrocarbon/genetics
17.
Sci Adv ; 9(10): eadc9436, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36888717

ABSTRACT

Tumors use multiple mechanisms to actively exclude immune cells involved in antitumor immunity. Strategies to overcome these exclusion signals remain limited due to an inability to target therapeutics specifically to the tumor. Synthetic biology enables engineering of cells and microbes for tumor-localized delivery of therapeutic candidates previously unavailable using conventional systemic administration techniques. Here, we engineer bacteria to intratumorally release chemokines to attract adaptive immune cells into the tumor environment. Bacteria expressing an activating mutant of the human chemokine CXCL16 (hCXCL16K42A) offer therapeutic benefit in multiple mouse tumor models, an effect mediated via recruitment of CD8+ T cells. Furthermore, we target the presentation of tumor-derived antigens by dendritic cells, using a second engineered bacterial strain expressing CCL20. This led to type 1 conventional dendritic cell recruitment and synergized with hCXCL16K42A-induced T cell recruitment to provide additional therapeutic benefit. In summary, we engineer bacteria to recruit and activate innate and adaptive antitumor immune responses, offering a new cancer immunotherapy strategy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Animals , Mice , Humans , Neoplasms/genetics , Neoplasms/therapy , Immunotherapy/methods , Antigens, Neoplasm , Bacteria
18.
Science ; 382(6667): 211-218, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824640

ABSTRACT

A major challenge facing tumor-antigen targeting therapies such as chimeric antigen receptor (CAR)-T cells is the identification of suitable targets that are specifically and uniformly expressed on heterogeneous solid tumors. By contrast, certain species of bacteria selectively colonize immune-privileged tumor cores and can be engineered as antigen-independent platforms for therapeutic delivery. To bridge these approaches, we developed a platform of probiotic-guided CAR-T cells (ProCARs), in which tumor-colonizing probiotics release synthetic targets that label tumor tissue for CAR-mediated lysis in situ. This system demonstrated CAR-T cell activation and antigen-agnostic cell lysis that was safe and effective in multiple xenograft and syngeneic models of human and mouse cancers. We further engineered multifunctional probiotics that co-release chemokines to enhance CAR-T cell recruitment and therapeutic response.


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , Escherichia coli , Immunotherapy, Adoptive , Probiotics , Receptors, Chimeric Antigen , Animals , Humans , Mice , Immunotherapy, Adoptive/methods , Lymphocyte Activation , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , Probiotics/therapeutic use , Antigens, Neoplasm/immunology , Escherichia coli/genetics , Escherichia coli/immunology , Cell Engineering , Breast Neoplasms/therapy , Colorectal Neoplasms/therapy
19.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066243

ABSTRACT

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment strategies. Here, we demonstrate the phenomenon of selective, long-term colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition. We show that, after oral administration, adenomas can be monitored over time by recovering EcN from stool. We also demonstrate specific colonization of EcN to solitary neoplastic lesions in an orthotopic murine model of CRC. We then exploit this neoplasia-homing property of EcN to develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate, and demonstrate that oral delivery of this strain results in significantly increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. We also assess EcN engineered to locally release immunotherapeutics at the neoplastic site. Oral delivery to mice bearing adenomas, reduced adenoma burden by ∻50%, with notable differences in the spatial distribution of T cell populations within diseased and healthy intestinal tissue, suggesting local induction of robust anti-tumor immunity. Together, these results support the use of EcN as an orally-delivered platform to detect disease and treat CRC through its production of screening and therapeutic molecules.

SELECTION OF CITATIONS
SEARCH DETAIL