Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
J Am Chem Soc ; 146(22): 15345-15355, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767986

ABSTRACT

Electrode-confined molecular catalysts are promising systems to enable the efficient conversion of CO2 to useful products. Here, we describe the development of an original molecular cathode for CO2 reduction to CO based on the noncovalent integration of a tetraazamacrocyclic Co complex to a carbon nanotube-based matrix. Aqueous electrochemical characterization of the modified electrode allowed for clear observation of a change of redox behavior of the Co center as surface concentration was tuned, highlighting the impact of the catalyst microenvironment on its redox properties. The molecular cathode enabled efficient CO2-to-CO conversion in fully aqueous conditions, giving rise to a turnover number (TONCO) of up to 20 × 103 after 2 h of constant electrolysis at a mild overpotential (η = 450 mV) and with a faradaic efficiency for CO of about 95%. Post operando measurements using electrochemical techniques, inductively coupled plasma, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy characterization of the films demonstrated that the catalysis remained of molecular nature, making this Co-based electrode a new promising alternative for molecular electrocatalytic conversion of CO2-to-CO in fully aqueous media.

2.
Angew Chem Int Ed Engl ; 62(36): e202302779, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37073946

ABSTRACT

Nickel bisdiphosphine complexes bearing pendant amines form a unique series of catalysts (so-called DuBois' catalysts) capable of bidirectional/reversible electrocatalytic oxidation and production of dihydrogen. This unique behaviour is directly linked to the presence of proton relays installed close to the metal center. We report here for the arginine derivative [Ni(P2 Cy N2 Arg )2 ]6+ on a mechanistic model and its kinetic treatment that may apply to all DuBois' catalysts and show that it allows for a good fit of experimental data measured at different pH values, catalyst concentrations and partial hydrogen pressures. The bidirectionality of catalysis results from balanced equilibria related to hydrogen uptake/evolution on one side and (metal)-hydride installation/capture on the other side, both controlled by concentration effects resulting from the presence of proton relays and connected by two square schemes corresponding to proton-coupled electron transfer processes. We show that the catalytic bias is controlled by the kinetic of the H2 uptake/evolution step. Reversibility does not require that the energy landscape be flat, with redox transitions occurring at potentials up to 250 mV away for the equilibrium potential, although such large deviations from a flat energy landscape can negatively impacts the rate of catalysis when coupled with slow interfacial electron transfer kinetics.

3.
J Am Chem Soc ; 144(22): 9651-9660, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35623012

ABSTRACT

Solar hydrogen generation via water splitting using a monolithic photoelectrochemical cell, also called artificial leaf, could be a powerful technology to accelerate the transition from fossil to sustainable energy sources. Identification of scalable methods for the fabrication of monolithic devices and gaining insights into their operating mode to identify solutions to improve performance and stability represent great challenges. Herein, we report on the one-step fabrication of a CoWO|ITO|3jn-a-Si|Steel|CoWS monolithic device via the simple photoinduced deposition of CoWO and CoWS as oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalyst layers, respectively, onto an illuminated ITO|3jn-a-Si|Steel solar cell using a single-deposition bath containing the [Co(WS4)2]2- complex. In a pH 7 phosphate buffer solution, the best device achieved a solar-to-hydrogen conversion yield of 1.9%. Evolution of the catalyst layers and that of the 3jn-a-Si light-harvesting core during the operation of the monolithic device are examined by conventional tools such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma optical emission spectroscopy (ICP-OES) together with a bipotentiostat measurement. We demonstrate that the device performance degrades due to the partial dissolution of the catalyst. Still, this degradation is healable by simply adding [Co(WS4)2]2- to the operating solution. However, modifications on the protecting indium-doped tin oxide (ITO) layer are shown to initiate irreversible degradation of the 3jn-a-Si light-harvesting core, resulting in a 10-fold decrease of the performances of the monolithic device.


Subject(s)
Silicon , Water , Electrochemical Techniques , Hydrogen , Silicon/chemistry , Steel , Water/chemistry
4.
J Am Chem Soc ; 144(8): 3614-3625, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35184564

ABSTRACT

With the price-competitiveness of solar and wind power, hydrogen technologies may be game changers for a cleaner, defossilized, and sustainable energy future. H2 can indeed be produced in electrolyzers from water, stored for long periods, and converted back into power, on demand, in fuel cells. The feasibility of the latter process critically depends on the discovery of cheap and efficient catalysts able to replace platinum group metals at the anode and cathode of fuel cells. Bioinspiration can be key for designing such alternative catalysts. Here we show that a novel class of iron-based catalysts inspired from the active site of [FeFe]-hydrogenase behave as unprecedented bidirectional electrocatalysts for interconverting H2 and protons efficiently under near-neutral aqueous conditions. Such bioinspired catalysts have been implemented at the anode of a functional membrane-less H2/O2 fuel cell device.


Subject(s)
Hydrogenase , Iron-Sulfur Proteins , Catalysis , Catalytic Domain , Hydrogen/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Protons , Water
5.
Chemistry ; 28(69): e202202260, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36069308

ABSTRACT

Surface integration of molecular catalysts inspired from the active sites of hydrogenase enzymes represents a promising route towards developing noble metal-free and sustainable technologies for H2 production. Efficient and stable catalyst anchoring is a key aspect to enable this approach. Herein, we report the preparation and electrochemical characterization of an original diironhexacarbonyl complex including two pyrene groups per catalytic unit in order to allow for its smooth integration, through π-interactions, onto multiwalled carbon nanotube-based electrodes. In this configuration, the grafted catalyst could reach turnover numbers for H2 production (TONH2 ) of up to 4±2×103 within 20 h of bulk electrolysis, operating at neutral pH. Post operando analysis of catalyst functionalized electrodes revealed the degradation of the catalytic unit occurred via loss of the iron carbonyl units, while the anchoring groups and most part of the ligand remained attached onto multiwalled carbon nanotubes.


Subject(s)
Hydrogenase , Nanotubes, Carbon , Hydrogenase/chemistry , Nanotubes, Carbon/chemistry , Hydrogen/chemistry , Catalysis , Electrodes
6.
Faraday Discuss ; 234(0): 34-41, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35188161

ABSTRACT

Herein, a new heterobimetallic CoFe complex is reported with the aim of comparing its performance in terms of H2 production within a series of related MFe complexes (M = Ni, Fe). The fully oxidized [(LN2S2)CoII(CO)FeIICp]+ complex (CoIIFeII, LN2S2 2- = 2,2'-(2,2'-bipyridine-6,6'-diyl)bis(1,1'-diphenylethanethiolate), Cp- = cyclopentadienyl anion) can be (electro)chemically reduced to its CoIFeII form, and both complexes have been isolated and fully characterized by means of classic spectroscopic techniques and theoretical calculations. The redox properties of CoIIFeII have been investigated in DMF, revealing that this complex is the easiest to reduce by one-electron among the analogous MFe complexes (M = Ni, Fe, Co). Nevertheless, it displays no electrocatalytic activity for H2 production, contrary to the FeFe and NiFe analogs, which have proven remarkable performance.


Subject(s)
Coordination Complexes/chemistry , Hydrogenase , Electrons , Hydrogenase/chemistry , Hydrogenase/metabolism , Oxidation-Reduction
7.
J Am Chem Soc ; 143(43): 18150-18158, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34677065

ABSTRACT

Integration of efficient platinum-group-metal (PGM)-free catalysts to fuel cells and electrolyzers is a prerequisite to their large-scale deployment. Here, we describe the development of a molecular-based anode for the hydrogen oxidation reaction (HOR) through noncovalent integration of a DuBois type Ni bioinspired molecular catalyst at the surface of a carbon nanotube modified gas diffusion layer. This mild immobilization strategy enabled us to gain high control over the loading in catalytic sites. Additionally, through the adjustment of the hydration level of the active layer, a new record current density of 214 ± 20 mA cm-2 could be reached at 0.4 V vs RHE with the PGM-free anode, at 25 °C. Near industrially relevant current densities were obtained at 55 °C with 150 ± 20 and 395 ± 30 mA cm-2 at 0.1 and 0.4 V overpotentials, respectively. These results further demonstrate the relevance of such molecular approaches for the development of electrocatalytic platforms for energy conversion.

8.
J Am Chem Soc ; 142(1): 274-282, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31760743

ABSTRACT

[Co(bapbpy)Cl]+ (bapbpy: 6,6'-bis(2-aminopyridyl)-2,2'-bipyridine) is a polypyridyl cobalt(II) complex bearing both a redox-active bipyridine ligand and pendant proton relays. This compound catalyzes electro-assisted H2 evolution in DMF with distinct mechanisms depending on the strength of the acid used as the proton source (pKa values ranging from 3.4 to 13.5 in DMF) and the applied potential. Electrochemical studies combining cyclic voltammetry and bulk electrolysis measurements enabled one to bring out four distinct catalytic processes. Where applicable, relevant kinetic information were obtained using either foot-of-the-wave analysis (FOWA) or analytical treatment of bulk electrolysis experiments. Among the different catalytic pathways identified in this study, a clear relationship between the catalyst performances and stability was evidenced. These results draw attention to a number of interesting considerations and may help in the development of future adequately designed catalysts.

9.
J Am Chem Soc ; 141(20): 8244-8253, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31026148

ABSTRACT

In the oxygen reduction reaction (ORR) domain, the investigation of new homogeneous catalysts is a crucial step toward the full comprehension of the key structural and/or electronic factors that control catalytic efficiency and selectivity. Herein, we report a unique non-heme diiron complex that can act as a homogeneous ORR catalyst in acetonitrile solution. This iron(II) thiolate dinuclear complex, [FeII2(LS)(LSH)] ([Fe2SH]+) (LS2- = 2,2'-(2,2'-bipyridine-6,6'-diyl)bis(1,1-diphenylethanethiolate)) contains a thiol group in the metal coordination sphere. [Fe2SH]+ is an efficient ORR catalyst both in the presence of a one-electron reducing agent and under electrochemically assisted conditions. However, its selectivity is dependent on the electron delivery pathway; in particular, the process is selective for H2O2 production under chemical conditions (up to ∼95%), whereas H2O is the main product during electrocatalysis (less than ∼10% H2O2). Based on computational work alongside the experimental data, a mechanistic proposal is discussed that rationalizes the selective and tunable reduction of dioxygen.

10.
J Am Chem Soc ; 141(24): 9593-9602, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31135147

ABSTRACT

A push-pull organic dye and a cobaloxime catalyst were successfully cografted on NiO and CuGaO2 to form efficient molecular photocathodes for H2 production with >80% Faradaic efficiency. CuGaO2 is emerging as a more effective p-type semiconductor in photoelectrochemical cells and yields a photocathode with 4-fold higher photocurrent densities and 400 mV more positive onset photocurrent potential compared to the one based on NiO. Such an optimized CuGaO2 photocathode was combined with a TaON|CoO x photoanode in a photoelectrochemical cell. Operated in this Z-scheme configuration, the two photoelectrodes produced H2 and O2 from water with 87% and 88% Faradaic efficiency, respectively, at pH 7 under visible light and in the absence of an applied bias, equating to a solar to hydrogen conversion efficiency of 5.4 × 10-3%. This is, to the best of our knowledge, the highest efficiency reported so far for a molecular-based noble metal-free water splitting Z-scheme.

11.
Chemistry ; 25(61): 13911-13920, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31334889

ABSTRACT

Molecular photosensitizers that are able to store multiple reducing equivalents are of great interest in the field of solar fuel production, where most reactions involve multielectronic reduction processes. In order to increase the reducing power of a ruthenium tris-diimine charge-photoaccumulating complex, two structural modifications on its fused dipyridophenazine-pyridoquinolinone ligand were computationally investigated. Addition of an electron-donating oxime group was calculated to substantially decrease the reduction potentials of the complex, thus guiding the synthesis of a pyridoquinolinone-oxime derivative. Its spectroscopic and (spectro)electrochemical characterization experimentally confirmed the DFT predictions, with the first and second reduction processes cathodically shifted by -0.24 and -0.14 V, respectively, compared to the parent complex. Moreover, the ability of this novel artificial photosynthetic system to store two photogenerated electrons at a more reducing potential, via a proton-coupled electron-transfer mechanism, was demonstrated.

12.
Nat Chem Biol ; 13(7): 779-784, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553946

ABSTRACT

[FeFe] hydrogenase (HydA) catalyzes interconversion between 2H+ and H2 at an active site composed of a [4Fe-4S] cluster linked to a 2Fe subcluster that harbors CO, CN- and azapropanedithiolate (adt2-) ligands. HydE, HydG and HydF are the maturases specifically involved in the biosynthesis of the 2Fe subcluster. Using ligands synthesized by HydE and HydG, HydF assembles a di-iron precursor of the 2Fe subcluster and transfers it to HydA for maturation. Here we report the first X-ray structure of HydF with its [4Fe-4S] cluster. The cluster is chelated by three cysteines and an exchangeable glutamate, which allows the binding of synthetic mimics of the 2Fe subcluster. [Fe2(adt)(CO)4(CN)2]2- is proposed to be the true di-iron precursor because, when bound to HydF, it matures HydA and displays features in Fourier transform infrared (FTIR) spectra that are similar to those of the native HydF active intermediate. A new route toward the generation of artificial hydrogenases, as combinations of HydF and such biomimetic complexes, is proposed on the basis of the observed hydrogenase activity of chemically modified HydF.


Subject(s)
Hydrogenase , Crystallography, X-Ray , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Models, Molecular , Protein Conformation , Spectroscopy, Fourier Transform Infrared
13.
J Am Chem Soc ; 140(16): 5516-5526, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29595965

ABSTRACT

[FeFe]-hydrogenases, HydAs, are unique biocatalysts for proton reduction to H2. However, they suffer from a number of drawbacks for biotechnological applications: size, number and diversity of metal cofactors, oxygen sensitivity. Here we show that HydA from Megasphaera elsdenii (MeHydA) displays significant resistance to O2. Furthermore, we produced a shorter version of this enzyme (MeH-HydA), lacking the N-terminal domain harboring the accessory FeS clusters. As shown by detailed spectroscopic and biochemical characterization, MeH-HydA displays the following interesting properties. First, a functional active site can be assembled in MeH-HydA in vitro, providing the enzyme with excellent hydrogenase activity. Second, the resistance of MeHydA to O2 is conserved in MeH-HydA. Third, MeH-HydA is more biased toward proton reduction than MeHydA, as the result of the truncation changing the rate limiting steps in catalysis. This work shows that it is possible to engineer HydA to generate an active hydrogenase that combines the resistance of the most resistant HydAs and the simplicity of algal HydAs, containing only the H-cluster.


Subject(s)
Hydrogenase/metabolism , Megasphaera elsdenii/enzymology , Oxygen/metabolism , Protein Engineering , Biocatalysis , Carbon Monoxide/metabolism , Catalytic Domain , Hydrogenase/chemistry , Hydrogenase/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Megasphaera elsdenii/chemistry , Megasphaera elsdenii/genetics , Megasphaera elsdenii/metabolism , Models, Molecular , Protein Conformation , Protein Domains , Protein Engineering/methods
14.
Chemistry ; 24(35): 8779-8786, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29637648

ABSTRACT

The synthesis and characterization of a dinuclear bis(thiosemicarbazone) cobalt complex [Co2 L2 (NCS)2 ] is reported. This complex exhibits significant catalytic activity for hydrogen production in DMF by using triethylammonium (Et3 NHBF4 ) as the proton source. Cyclic voltammetry data allowed a maximum turnover frequency of 130 s-1 for 1 m proton concentration to be determined. The catalytic nature of the process and the production of dihydrogen were confirmed by gas analysis during controlled potential electrolysis experiments. Quantum chemical calculations show that the complex displays a ligand-assisted metal-centered reactivity and supports a catalytic mechanism involving ligand-based reduction and protonation steps followed by metal-centered processes.

15.
Angew Chem Int Ed Engl ; 57(49): 16001-16004, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30307683

ABSTRACT

[NiFe]-hydrogenase enzymes are efficient catalysts for H2 evolution but their synthetic models have not been reported to be active under aqueous conditions so far. Here we show that a close model of the [NiFe]-hydrogenase active site can work as a very active and stable heterogeneous H2 evolution catalyst under mildly acidic aqueous conditions. Entry in catalysis is a NiI FeII complex, with electronic structure analogous to the Ni-L state of the enzyme, corroborating the mechanism modification recently proposed for [NiFe]-hydrogenases.


Subject(s)
Hydrogen/metabolism , Hydrogenase/metabolism , Models, Biological , Biocatalysis , Catalytic Domain , Density Functional Theory , Hydrogen/chemistry , Hydrogen-Ion Concentration , Hydrogenase/chemistry , Molecular Conformation , Solutions , Water/chemistry , Water/metabolism
16.
Biochim Biophys Acta ; 1857(11): 1734-1740, 2016 11.
Article in English | MEDLINE | ID: mdl-27421233

ABSTRACT

[FeFe]-hydrogenases are unique and fascinating enzymes catalyzing the reversible reduction of protons into hydrogen. These metalloenzymes display extremely large catalytic reaction rates at very low overpotential values and are, therefore, studied as potential catalysts for bioelectrodes of electrolyzers and fuel cells. Since they contain multiple metal cofactors whose biosynthesis depends on complex protein machineries, their preparation is difficult. As a consequence still few have been purified to homogeneity allowing spectroscopic and structural characterization. As part of a program aiming at getting easy access to new hydrogenases we report here a methodology based on a purely chemical assembly of their metal cofactors. This methodology is applied to the preparation and characterization of the hydrogenase from the fermentative anaerobic rumen bacterium Megasphaera elsdenii, which has only been incompletely characterized in the past.


Subject(s)
Bacterial Proteins/chemistry , Coenzymes/chemistry , Hydrogenase/chemistry , Iron/metabolism , Megasphaera elsdenii/enzymology , Bacterial Proteins/metabolism , Coenzymes/metabolism , Hydrogenase/metabolism , Iron/chemistry , Molecular Dynamics Simulation , Protein Binding , Protein Multimerization
17.
J Am Chem Soc ; 139(10): 3685-3696, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28206761

ABSTRACT

We report here on a new series of CO2-reducing molecular catalysts based on Earth-abundant elements that are very selective for the production of formic acid in dimethylformamide (DMF)/water mixtures (Faradaic efficiency of 90 ± 10%) at moderate overpotentials (500-700 mV in DMF measured at the middle of the catalytic wave). The [CpCo(PR2NR'2)I]+ compounds contain diphosphine ligands, PR2NR'2, with two pendant amine residues that act as proton relays during CO2-reduction catalysis and tune their activity. Four different PR2NR'2 ligands with cyclohexyl or phenyl substituents on phosphorus and benzyl or phenyl substituents on nitrogen were employed, and the compound with the most electron-donating phosphine ligand and the most basic amine functions performs best among the series, with turnover frequency >1000 s-1. State-of-the-art benchmarking of catalytic performances ranks this new class of cobalt-based complexes among the most promising CO2-to-formic acid reducing catalysts developed to date; addressing the stability issues would allow further improvement. Mechanistic studies and density functional theory simulations confirmed the role of amine groups for stabilizing key intermediates through hydrogen bonding with water molecules during hydride transfer from the Co center to the CO2 molecule.

18.
Nat Mater ; 15(6): 640-6, 2016 06.
Article in English | MEDLINE | ID: mdl-26974410

ABSTRACT

Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoSx, prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13](2-) building blocks. Of the three terminal disulfide (S2(2-)) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum.

19.
Faraday Discuss ; 198: 251-261, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28276542

ABSTRACT

The design of molecular dyads combining a light-harvesting unit with an electroactive centre is highly demanded in the field of artificial photosynthesis. The versatile Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) procedure was employed to assemble a ruthenium tris-diimine unit to an unprecedented azide-substituted copper diimine-dioxime moiety. The resulting RuIICuII dyad 4 was characterized by electrochemistry, 1H NMR, EPR, UV-visible absorption, steady-state fluorescence and transient absorption spectroscopies. Photoinduced electron transfer from the ruthenium to the copper centre upon light-activation in the presence of a sacrificial electron donor was established thanks to EPR-monitored photolysis experiments, opening interesting perspectives for photocatalytic applications.

20.
Inorg Chem ; 56(24): 14801-14808, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29193978

ABSTRACT

In the quest for new, efficient, and noble-metal-free H2-evolution catalysts, hydrogenase enzymes are a source of inspiration. Here, we describe the development of a new hybrid material based on a structural and functional [NiFe]-hydrogenase model complex (NiFe) incorporated into the Zr-based MOF PCN-777. The bulk NiFe@PCN-777 material was synthesized by simple encapsulation. Characterization by solid-state NMR and IR spectroscopy, SEM-EDX, ICP-OES, and gas adsorption confirmed the inclusion of the guest. FTO-supported thin films of the NiFe@PCN-777 composite were obtained by electrophoretic deposition of the bulk material and characterized by SEM-EDX, ICP-OES, and cyclic voltammetry. The average surface concentration of electroactive NiFe catalyst in the film was found to be ∼9.6 × 10-10 mol cm-2, implying that a surprisingly high fraction (37%) of NiFe units incorporated in the MOF are electroactive. By cyclic voltammetry, we showed that NiFe maintains its electrocatalytic capabilities for H+ reduction inside the MOF cavities, even if under controlled-potential electrolysis conditions the activity of NiFe cannot be discerned from that of free PCN-777 and FTO.


Subject(s)
Biomimetic Materials/chemistry , Hydrogenase/chemistry , Iron/chemistry , Metal-Organic Frameworks/chemistry , Nickel/chemistry , Zirconium/chemistry , Catalysis , Electrochemical Techniques , Models, Molecular , Oxidation-Reduction , Protons
SELECTION OF CITATIONS
SEARCH DETAIL