Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Cell ; 172(1-2): 135-146.e9, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328908

ABSTRACT

Innate immune cells can develop long-term memory after stimulation by microbial products during infections or vaccinations. Here, we report that metabolic signals can induce trained immunity. Pharmacological and genetic experiments reveal that activation of the cholesterol synthesis pathway, but not the synthesis of cholesterol itself, is essential for training of myeloid cells. Rather, the metabolite mevalonate is the mediator of training via activation of IGF1-R and mTOR and subsequent histone modifications in inflammatory pathways. Statins, which block mevalonate generation, prevent trained immunity induction. Furthermore, monocytes of patients with hyper immunoglobulin D syndrome (HIDS), who are mevalonate kinase deficient and accumulate mevalonate, have a constitutive trained immunity phenotype at both immunological and epigenetic levels, which could explain the attacks of sterile inflammation that these patients experience. Unraveling the role of mevalonate in trained immunity contributes to our understanding of the pathophysiology of HIDS and identifies novel therapeutic targets for clinical conditions with excessive activation of trained immunity.


Subject(s)
Immunity, Innate , Immunologic Memory , Mevalonate Kinase Deficiency/immunology , Mevalonic Acid/metabolism , Monocytes/immunology , Animals , Cells, Cultured , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Receptor, IGF Type 1/metabolism
2.
Cell ; 167(5): 1354-1368.e14, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863248

ABSTRACT

Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, ß-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo ß-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. VIDEO ABSTRACT.


Subject(s)
Immune Tolerance , Lipopolysaccharides/immunology , Macrophages/immunology , Monocytes/immunology , Sepsis/immunology , Transcription, Genetic , beta-Glucans/immunology , Cell Differentiation , DNA Methylation , Epigenomics , Gene Regulatory Networks , Histone Code , Humans , Immunity, Innate , Immunologic Memory , Macrophages/cytology , Monocytes/cytology , Sepsis/genetics
3.
Nat Immunol ; 17(4): 406-13, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950237

ABSTRACT

The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.


Subject(s)
Cytokines/immunology , Endotoxemia/immunology , Energy Metabolism/immunology , Immune Tolerance/immunology , Immunity, Innate/immunology , Macrophages/immunology , Monocytes/immunology , Sepsis/immunology , Adenosine Triphosphate/metabolism , Adult , Animals , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/immunology , Aspergillosis/metabolism , Candidiasis, Invasive/drug therapy , Candidiasis, Invasive/immunology , Candidiasis, Invasive/metabolism , Endotoxemia/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Female , Glycolysis , Humans , Immunoblotting , Interferon-gamma/therapeutic use , Lactic Acid/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Lipopolysaccharides/immunology , Macrophages/metabolism , Male , Mice , Middle Aged , Monocytes/metabolism , NAD/metabolism , Oxidative Phosphorylation , Oxygen Consumption , Prospective Studies , Sepsis/drug therapy , Sepsis/metabolism , Transcriptome , Young Adult
4.
Immunity ; 49(5): 819-828.e6, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30413362

ABSTRACT

Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.


Subject(s)
Graft Survival/immunology , Immunosuppression Therapy , Inflammation/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Organ Transplantation , Allografts , Animals , Biomarkers , HMGB1 Protein/genetics , Immune Tolerance , Immunity, Innate , Immunologic Memory , Macrophages/immunology , Macrophages/metabolism , Mice , TOR Serine-Threonine Kinases/metabolism , Vimentin/genetics
5.
Clin Immunol ; 268: 110368, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307482

ABSTRACT

Autoinflammatory diseases, while having a variety of underlying causes, are mediated by dysfunctional innate immune responses. Therefore, standard treatments target innate cytokines or block their receptors. Despite excellent responses in some patients, first-line treatments fail in others, for reasons which remain to be understood. We studied the effects of IL-37, an anti-inflammatory cytokine, on immune cells using multi-omics profiling of 325 healthy adults. Our findings show that IL-37 is associated with inflammation control and generally reduced immune cell activity. Further, genetic variants in IL37 are associated with impaired trained immunity, a memory phenotype of innate immune cells contributing to autoinflammation. To underpin the medical potential of IL-37, an explorative cohort of seven autoinflammatory disorders was built. In vitro stimulation experiments argue for recombinant IL-37 as a potential therapy in IL-6-, and IL-22-driven conditions. Concluding, IL-37 is highlighted as a cytokine with broad anti-inflammatory functions, implicating its potential as therapeutic intervention.

6.
Clin Immunol ; : 110375, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369972

ABSTRACT

While next generation sequencing has expanded the scientific understanding of Inborn Errors of Immunity (IEI), the clinical use and re-use of exome sequencing is still emerging. We revisited clinical exome data from 1300 IEI patients using an updated in silico IEI gene panel. Variants were classified and curated through expert review. The molecular diagnostic yield after standard exome analysis was 11.8 %. Through systematic reanalysis, we identified variants of interest in 5.2 % of undiagnosed patients, with 76.7 % being (candidate) disease-causing, providing a (candidate) diagnosis in 15.2 % of our cohort. We find a 1.7 percentage point increase in conclusive molecular diagnoses. We find a high degree of actionability in patients with a genetic diagnosis (76.4 %). Despite the modest absolute diagnostic gain, these data support the benefit of iterative exome reanalysis in IEI patients, conveying the notion that our current understanding of genes and variants involved in IEI is by far not saturated.

7.
J Clin Immunol ; 44(1): 10, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38129331

ABSTRACT

Here, we describe an adult female with severe fasciitis and skin necrosis who carried a private, predicted deleterious missense mutation in OTULIN in heterozygosity. OTULIN is a cellular regulator of deubiquitination that has been shown to play a key role in intrinsic immunity against staphylococcal α-toxin. The patient was treated with broad-spectrum antibiotics, and multiple surgical explorations were conducted without clinical response. Since autoinflammation was the predominant clinical feature, TNF inhibition was started with a good clinical response. We show that excessive inflammation in OTULIN haploinsufficiency can be effectively treated by TNF inhibition.


Subject(s)
Fasciitis , Haploinsufficiency , Female , Humans , Inflammation/genetics , Necrosis , Ubiquitination
8.
Cytokine ; 162: 156102, 2023 02.
Article in English | MEDLINE | ID: mdl-36476991

ABSTRACT

INTRODUCTION: Chronic inflammatory or autoimmune diseases are commonly treated with immunosuppressive medication such as NSAIDs, corticosteroids, or antibodies against specific cytokines (TNF, IL-1 IL-17, IL-23, etc.) or signalling cascades (e.g. JAK-STAT inhibitors). Using sequencing data to locate genetic mutations in relevant genes allows the identification of alternative targets in a patient-tailored therapy setting. Interleukin (IL)-37 is an anti-inflammatory cytokine with broad effects on innate and adaptive immune cell function. Dysfunctional IL-37 expression or signalling is linked to various autoinflammatory disorders. The administration of recombinant IL-37 to hyperinflammatory patients that are non-responsive to standard treatment bears the potential to alleviate symptoms. METHODS: In this case study, the (hyper)responsiveness of immune cell subsets was investigated in a single patient with a seronegative autoimmune disorder who carries a heterozygous stop-gain variant in IL37 (IL37 Chr2(GRCh37):g.113670640G > A NM_014439.3:c.51G > A p.(Trp17*)). As the patient has been non-responsive to blockage of TNF or IL-1 by Etanercept or Anakinra, respectively, additional in-vitro experiments were set out to elucidate whether treatment with recombinant IL-37 could normalise observed immune cell functions. FINDINGS: Characterisation of immune cell function showed no elevated overall production of acute-phase pro-inflammatory cytokines by patient PBMCs and neutrophils at baseline or upon stimulation. T-cell responses were elevated, as was the metabolic activity and IL-1Ra production of PBMCs at baseline. The identified stop-gain variant in IL37 does not result in the absence of the protein in circulation. In line with this, treatment with recombinant IL-37 did overall not dampen immune responses with the exception of the complete suppression of IL-17. CONCLUSION: The heterozygous stop-gain variant in IL37 (IL37 NM_014439.3:c.51G > A p.(Trp17*)) is not of functional relevance as we observed no clear pro-inflammatory phenotype in immune cells of a patient carrying this variant.


Subject(s)
Interleukin-17 , Interleukin-1 , Humans , Interleukin-1/metabolism , Interleukin-17/genetics , Cytokines/genetics , Inflammation , Gene Expression
9.
Int J Mol Sci ; 25(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38203686

ABSTRACT

Anticytokine autoantibodies (ACAAs) are a fascinating group of antibodies that have gained more and more attention in the field of autoimmunity and secondary immunodeficiencies over the years. Some of these antibodies are characterized by their ability to target and neutralize specific cytokines. ACAAs can play a role in the susceptibility to several infectious diseases, and their infectious manifestations depending on which specific immunological pathway is affected. In this review, we will give an outline per infection in which ACAAs might play a role and whether additional immunomodulatory treatment next to antimicrobial treatment can be considered. Finally, we describe the areas for future research on ACAAs.


Subject(s)
Autoantibodies , Communicable Diseases , Humans , Autoimmunity , Cytokines , Immunomodulation
10.
Int J Mol Sci ; 24(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36768634

ABSTRACT

Trained immunity is the process of long-term functional reprogramming (a de facto innate immune memory) of innate immune cells such as monocytes and macrophages after an exposure to pathogens, vaccines, or their ligands. The induction of trained immunity is mediated through epigenetic and metabolic mechanisms. Apart from exogenous stimuli, trained immunity can be induced by endogenous compounds such as oxidized LDL, urate, fumarate, but also cytokines including IL-1α and IL-1ß. Here, we show that also recombinant IL-36γ, a pro-inflammatory cytokine of the IL-1-family, is able to induce trained immunity in primary human monocytes, demonstrated by higher cytokine responses and an increase in cellular metabolic pathways both regulated by epigenetic histone modifications. These effects could be inhibited by the IL-36 receptor antagonist as well as by IL-38, an anti-inflammatory cytokine of the IL-1 family which shares its main receptor with IL-36 (IL-1R6). Further, we demonstrated that trained immunity induced by IL-36γ is mediated by NF-κB and mTOR signaling. The inhibitory effect of IL-38 on IL-36γ-induced trained immunity was confirmed in experiments using bone marrow of IL-38KO and WT mice. These results indicate that exposure to IL-36γ results in long-term pro-inflammatory changes in monocytes which can be inhibited by IL-38. Recombinant IL-38 could therefore potentially be used as a therapeutic intervention for diseases characterized by exacerbated trained immunity.


Subject(s)
Immunity, Innate , Trained Immunity , Humans , Animals , Mice , Interleukins/pharmacology , Interleukins/metabolism , Macrophages/metabolism , Cytokines/metabolism
11.
Cytokine ; 150: 155773, 2022 02.
Article in English | MEDLINE | ID: mdl-34844039

ABSTRACT

Trained immunity is the long-term memory of innate immune cells, characterised by increased pro-inflammatory responses towards homo- and heterologous secondary stimuli. Interleukin (IL)-1 signalling plays an essential role in the induction of trained immunity, also called innate immune memory. As such, certain anti-inflammatory members of the IL-1 family of cytokines (IL-1F) which interfere with the inflammatory process have the potential to regulate the induction of a trained phenotype. The aim of this review is to provide an update on the role of IL-1F members in the context of trained immunity, emphasising the role of anti-inflammatory cytokines from the IL-1F to inhibit the induction of trained immunity, and touching upon their potential as therapeutics in IL-1-driven inflammatory disorders.


Subject(s)
Cytokines , Immunity, Innate , Cells, Cultured , Interleukin-1
12.
Immunology ; 159(3): 289-297, 2020 03.
Article in English | MEDLINE | ID: mdl-31671203

ABSTRACT

Toll-like receptor 10 (TLR10) is the only member of the human Toll-like receptor family with an inhibitory function on the induction of innate immune responses and inflammation. However, its role in the modulation of trained immunity (innate immune memory) is unknown. In the present study, we assessed whether TLR10 modulates the induction of trained immunity induced by ß-glucan or bacillus Calmette-Guérin (BCG). Interleukin 10 receptor antagonist production was increased upon activation of TLR10 ex vivo after BCG vaccination, and TLR10 protein expression on monocytes was increased after BCG vaccination, whereas anti-TLR10 antibodies did not significantly modulate ß-glucan or BCG-induced trained immunity in vitro. A known immunomodulatory TLR10 missense single-nucleotide polymorphism (rs11096957) influenced trained immunity responses by ß-glucan or BCG in vitro. However, the in vivo induction of trained immunity by BCG vaccination was not influenced by TLR10 polymorphisms. In conclusion, TLR10 has a limited, non-essential impact on the induction of trained immunity in humans.


Subject(s)
BCG Vaccine/administration & dosage , Immunity, Innate/drug effects , Leukocytes, Mononuclear/drug effects , Toll-Like Receptor 10/agonists , Vaccination , Adolescent , Adult , Aged , Cells, Cultured , Female , Humans , Interleukin 1 Receptor Antagonist Protein/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Mutation, Missense , Randomized Controlled Trials as Topic , Signal Transduction , Toll-Like Receptor 10/genetics , Toll-Like Receptor 10/immunology , Toll-Like Receptor 10/metabolism , Up-Regulation , Young Adult
13.
Eur J Clin Microbiol Infect Dis ; 39(6): 1177-1184, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32065303

ABSTRACT

The Vi polysaccharide typhoid fever vaccine (TFV) provides incomplete protection against typhoid fever. BCG, the vaccine against tuberculosis, can potentiate immune responses to other vaccines through induction of trained innate immunity and heterologous adaptive immunity. We performed an explorative, randomized, noncontrolled open trial to investigate whether BCG vaccination increases humoral and cellular response to TFV and whether BCG and TFV modulate nonspecific immune responses. Thirty volunteers were randomized to receive either TFV alone or BCG followed by TFV after 2 weeks. Ex vivo leukocyte responses and anti-Vi IgG antibody titers were measured 2 weeks and 3 months after TFV. BCG administration prior to TFV vaccination did not increase specific humoral or cellular immune responses to Salmonella typhi. TFV vaccination decreased pro-inflammatory responses to non-related stimuli. This effect was counteracted by prior BCG administration, which also led to decreased IL-10 and increased IL-22 responses to non-related stimuli. In an in vitro model of trained immunity TFV led to immunotolerance, which was partially reversed by BCG-induced trained immunity. BCG does not modulate adaptive immune responses to TFV but partially prevents inhibition of innate immune responses induced by TFV. Nonspecific effects of vaccines to unrelated microbial stimuli must be considered in the evaluation of their biological effects (ClinicalTrials.gov NCT02175420).


Subject(s)
BCG Vaccine/administration & dosage , Polysaccharides, Bacterial/administration & dosage , Salmonella typhi/immunology , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/administration & dosage , Adult , Antibodies, Bacterial/blood , BCG Vaccine/immunology , Cytokines/blood , Female , Humans , Immune Tolerance , Immunity, Heterologous , Immunoglobulin G/blood , Male , Polysaccharides, Bacterial/immunology , Random Allocation , Typhoid-Paratyphoid Vaccines/immunology , Young Adult
14.
Semin Immunol ; 28(5): 425-430, 2016 10.
Article in English | MEDLINE | ID: mdl-27686054

ABSTRACT

The classical view that only adaptive immunity can build immunological memory has recently been challenged. Both in organisms lacking adaptive immunity as well as in mammals, the innate immune system can adapt to mount an increased resistance to reinfection, a de facto innate immune memory termed trained immunity. Recent studies have revealed that rewiring of cellular metabolism induced by different immunological signals is a crucial step for determining the epigenetic changes underlying trained immunity. Processes such as a shift of glucose metabolism from oxidative phosphorylation to aerobic glycolysis, increased glutamine metabolism and cholesterol synthesis, play a crucial role in these processes. The discovery of trained immunity opens the door for the design of novel generations of vaccines, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases.


Subject(s)
Energy Metabolism , Immunity , Immunologic Memory , Metabolic Networks and Pathways , Animals , Epigenesis, Genetic , Gene Expression Regulation , Glycolysis , Humans , Immunity, Innate , Immunomodulation , Macrophages/immunology , Macrophages/metabolism
15.
J Infect Dis ; 220(1): 139-150, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30753544

ABSTRACT

BACKGROUND: Metformin, the most widely administered diabetes drug, has been proposed as a candidate adjunctive host-directed therapy for tuberculosis, but little is known about its effects on human host responses to Mycobacterium tuberculosis. METHODS: We investigated in vitro and in vivo effects of metformin in humans. RESULTS: Metformin added to peripheral blood mononuclear cells from healthy volunteers enhanced in vitro cellular metabolism while inhibiting the mammalian target of rapamycin targets p70S6K and 4EBP1, with decreased cytokine production and cellular proliferation and increased phagocytosis activity. Metformin administered to healthy human volunteers led to significant downregulation of genes involved in oxidative phosphorylation, mammalian target of rapamycin signaling, and type I interferon response pathways, particularly following stimulation with M. tuberculosis, and upregulation of genes involved in phagocytosis and reactive oxygen species production was increased. These in vivo effects were accompanied by a metformin-induced shift in myeloid cells from classical to nonclassical monocytes. At a functional level, metformin lowered ex vivo production of tumor necrosis factor α, interferon γ, and interleukin 1ß but increased phagocytosis activity and reactive oxygen species production. CONCLUSION: Metformin has a range of potentially beneficial effects on cellular metabolism, immune function, and gene transcription involved in innate host responses to M. tuberculosis.


Subject(s)
Host-Pathogen Interactions/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/metabolism , Tuberculosis/microbiology , Cell Proliferation/drug effects , Down-Regulation/drug effects , Healthy Volunteers , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/microbiology , Monocytes/drug effects , Monocytes/metabolism , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
16.
PLoS Pathog ; 13(9): e1006632, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28922415

ABSTRACT

Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.


Subject(s)
Candidiasis/metabolism , Glucose/metabolism , Immunity, Innate/immunology , Lectins, C-Type/metabolism , Monocytes/metabolism , Signal Transduction , Animals , Glycolysis/drug effects , Humans , Mice
17.
AIDS ; 38(2): 193-205, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37991008

ABSTRACT

OBJECTIVE: To determine the yield of screening for latent tuberculosis infection (LTBI) among people with HIV (PWH) in low tuberculosis (TB) incidence countries (<10 TB cases per 100 000 persons). DESIGN: A systematic review and meta-analysis were performed to assess prevalence and predictive factors of LTBI, rate of TB progression, effect of TB preventive treatment (TPT), and numbers needed to screen (NNS). METHODS: PubMed and Cochrane Library were searched for studies reporting primary data, excluding studies on active or paediatric TB. We extracted LTBI cases, odds ratios, and TB incidences; pooled estimates using a random-effects model; and used the Newcastle-Ottawa scale for bias. RESULTS: In 51 studies with 65 930 PWH, 12% [95% confidence interval (CI) 10-14] had a positive LTBI test, which was strongly associated with origin from a TB-endemic country [odds ratio (OR) 4.7] and exposure to TB (OR 2.9). Without TPT (10 629 PWH), TB incidence was 28/1000 person-years (PY; 95% CI 12-45) for LTBI-test positive versus 4/1000 PY (95% CI 0-7) for LTBI-test-negative individuals. Among 625 PWH (1644 PY) receiving TPT, 15 developed TB (6/1000 PY). An estimated 20 LTBI-positive individuals would need TPT to prevent one case of TB, and numbers NNS to detect LTBI or prevent active TB varied according to a-priori risk of LTBI. CONCLUSION: The relatively high prevalence of LTBI among PWH and the strong correlation with origin from a TB-endemic country support risk-stratified LTBI screening strategies for PWH in low-incidence countries and treating those who test positive.


Subject(s)
HIV Infections , Latent Tuberculosis , Humans , Child , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Latent Tuberculosis/prevention & control , Tuberculin Test , Incidence , HIV Infections/complications , HIV Infections/epidemiology , Mass Screening
18.
Vaccine ; 42(26): 126396, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39353267

ABSTRACT

The mechanisms that underpin low vaccine responses, which can lead to inadequate protection against infection, are still partially unclear. Interleukin (IL)-38 is a member of the IL-1 family, expressed by B cells among others, that regulates inflammatory responses. A recent study shows that IL-38 suppresses plasma cell generation and antibody production upon immune activation. We hypothesis that IL-38 affects antigen-presentation capacity of innate immune cells, effecting antibody production. Here, we investigated the effect of recombinant human IL-38 on human peripheral blood mononuclear cells and myeloid-derived DCs regarding cytokine production, phagocytosis, and expression of MCH II and co-stimulatory proteins in vitro, and further relate circulating plasma IL-38 concentrations to antibody responses in a cohort of 75 females aged 18-48 vaccinated with BCG and Tdap-IPV. To this end, we found that IL-38 decreased the expression of HLA-DR, HLA-DM, and CD83 on PBMCs, and CD40 and CD86 on MDDCs. IL-38 further impaired phagocytosis capacity of monocytes. Lastly, antibody production against diphtheria toxoids up to eight months post-vaccination was negatively associated with IL-38 plasma concentrations. These data suggest that IL-38 could dampen the effectiveness of antigen-presentation and phagocytosis, and could therefore modulate the immunogenicity of some vaccine types.

20.
IDCases ; 32: e01753, 2023.
Article in English | MEDLINE | ID: mdl-37063784

ABSTRACT

Here we describe a complicated case of a relapsed Leishmania infantum infection after an allogeneic stem cell transplantation (allo-SCT) for primary myelofibrosis. Three years earlier the patient had been diagnosed with a hemophagocytic lymphohistiocytosis secondary to a visceral Leishmania infantum infection, for which he was effectively treated with a cumulative dose of 40 mg/kg liposomal amphotericin B. During the first disease episode he was also diagnosed with primary myelofibrosis for which he received medical follow-up. One year later ruxolitinib was started due to progressive disease. No Leishmania relapse occurred. Nevertheless, the marrow fibrosis progressed, and an allo-SCT was performed. Two months after allo-SCT prolonged fever and a persistent pancytopenia occurred, which was due to a relapse of visceral Leishmaniasis. The infection was refractory to a prolonged treatment with liposomal amphotericin B with a cumulative dose up to 100 mg/kg. Salvage treatment with miltefosine led to reduction of fever within a few days and was followed by a slow recovery of pancytopenia over the following months. The Leishmania parasite load by PCR started to decline and after 3.5 months no Leishmania DNA could be detected anymore and follow-up until ten months afterwards did not show a relapse.

SELECTION OF CITATIONS
SEARCH DETAIL