Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Biol Chem ; 296: 100383, 2021.
Article in English | MEDLINE | ID: mdl-33556373

ABSTRACT

The rhomboid protease PARL is a critical regulator of mitochondrial homeostasis through its cleavage of substrates such as PINK1, PGAM5, and Smac/Diablo, which have crucial roles in mitochondrial quality control and apoptosis. However, the catalytic properties of PARL, including the effect of lipids on the protease, have never been characterized in vitro. To address this, we isolated human PARL expressed in yeast and used FRET-based kinetic assays to measure proteolytic activity in vitro. We show that PARL activity in detergent is enhanced by cardiolipin, a lipid enriched in the mitochondrial inner membrane. Significantly higher turnover rates were observed for PARL reconstituted in proteoliposomes, with Smac/Diablo being cleaved most rapidly at a rate of 1 min-1. In contrast, PGAM5 is cleaved with the highest efficiency (kcat/KM) compared with PINK1 and Smac/Diablo. In proteoliposomes, a truncated ß-cleavage form of PARL, a physiological form known to affect mitochondrial fragmentation, is more active than the full-length enzyme for hydrolysis of PINK1, PGAM5, and Smac/Diablo. Multiplex profiling of 228 peptides reveals that PARL prefers substrates with a bulky side chain such as Phe in P1, which is distinct from the preference for small side chain residues typically found with bacterial rhomboid proteases. This study using recombinant PARL provides fundamental insights into its catalytic activity and substrate preferences that enhance our understanding of its role in mitochondrial function and has implications for specific inhibitor design.


Subject(s)
Metalloproteases/metabolism , Metalloproteases/physiology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/physiology , Apoptosis Regulatory Proteins/metabolism , Catalytic Domain , Endopeptidases/metabolism , HEK293 Cells , HeLa Cells , Humans , Metalloproteases/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Peptide Hydrolases/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Proteolysis
2.
Mol Cell Proteomics ; 18(5): 968-981, 2019 05.
Article in English | MEDLINE | ID: mdl-30705125

ABSTRACT

Proteolysis is an integral component of life and has been implicated in many disease processes. To improve our understanding of peptidase function, it is imperative to develop tools to uncover substrate specificity and cleavage efficiency. Here, we combine the quantitative power of tandem mass tags (TMTs) with an established peptide cleavage assay to yield quantitative Multiplex Substrate Profiling by Mass Spectrometry (qMSP-MS). This assay was validated with papain, a well-characterized cysteine peptidase, to generate cleavage efficiency values for hydrolysis of 275 unique peptide bonds in parallel. To demonstrate the breath of this assay, we show that qMSP-MS can uncover the substrate specificity of minimally characterized intramembrane rhomboid peptidases, as well as define hundreds of proteolytic activities in complex biological samples, including secretions from lung cancer cell lines. Importantly, our qMSP-MS library uses synthetic peptides whose termini are unmodified, allowing us to characterize not only endo- but also exo-peptidase activity. Each cleaved peptide sequence can be ranked by turnover rate, and the amino acid sequence of the best substrates can be used for designing fluorescent reporter substrates. Discovery of peptide substrates that are selectively cleaved by peptidases which are active at the site of disease highlights the potential for qMSP-MS to guide the development of peptidase-activating drugs for cancer and infectious disease.


Subject(s)
Mass Spectrometry/methods , Peptide Hydrolases/metabolism , Aspergillus/metabolism , Cell Line, Tumor , Fluorescence , Humans , Lung Neoplasms/metabolism , Papain/metabolism , Proteolysis , Reproducibility of Results , Substrate Specificity
3.
Med Res Rev ; 40(2): 654-682, 2020 03.
Article in English | MEDLINE | ID: mdl-31448437

ABSTRACT

Modulation of T-cell immune functions by blocking key immune checkpoint protein interactions using monoclonal antibodies (mAbs) has been an innovative immunotherapeutic strategy. T-cells are regulated by different checkpoint proteins at the immunological synapse including the B7 ligands (B7-1 or CD80 and B7-2 or CD86), which is discussed in this review. These ligands are typically expressed on antigen presenting cells and interact with CD28 and cytotoxic T lymphocyte antigen-4 (CTLA-4) receptors on T-cells. Their interactions with CD28 trigger a costimulatory signal that potentiates T-cell activation, function and survival in response to cognate antigen. In addition, their interactions with CTLA-4 can also inhibit certain effector T-cell responses, particularly in response to sustained antigen stimulation. Through these mechanisms, the balance between T-cell activation and suppression is maintained, preventing the occurrence of immunopathology. Given their crucial roles in immune regulation, targeting B7 ligands has been an attractive strategy in cancer and autoimmunity. This review presents an overview of the essential roles of B7-1, highlighting the therapeutic benefits of modulating this protein in immunotherapy, and reviewing earlier and state-of-the-art efforts in developing anti-B7-1 inhibitors. Finally, we discuss the challenges facing the design of selective B7-1 inhibitors and present our perspectives for future developments.


Subject(s)
B7-1 Antigen/metabolism , Immunotherapy , Animals , Autoimmunity , B7-1 Antigen/chemistry , CTLA-4 Antigen/chemistry , CTLA-4 Antigen/metabolism , Drug Discovery , Humans , Ligands
4.
EMBO J ; 33(17): 1869-81, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25009246

ABSTRACT

Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases.


Subject(s)
Allosteric Regulation , Cell Membrane/enzymology , Escherichia coli/enzymology , Haemophilus influenzae/enzymology , Membrane Proteins/metabolism , Providencia/enzymology , Serine Proteases/metabolism , Cell Membrane/metabolism , Escherichia coli/metabolism , Fluorescence Resonance Energy Transfer , Haemophilus influenzae/metabolism , Kinetics , Protein Binding , Proteolysis , Providencia/metabolism
5.
Biol Chem ; 399(12): 1389-1397, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30044760

ABSTRACT

Rhomboids are ubiquitous intramembrane serine proteases that cleave transmembrane substrates. Their functions include growth factor signaling, mitochondrial homeostasis, and parasite invasion. A recent study revealed that the Escherichia coli rhomboid protease EcGlpG is essential for its extraintestinal pathogenic colonization within the gut. Crystal structures of EcGlpG and the Haemophilus influenzae rhomboid protease HiGlpG have deciphered an active site that is buried within the lipid bilayer but exposed to the aqueous environment via a cavity at the periplasmic face. A lack of physiological transmembrane substrates has hampered progression for understanding their catalytic mechanism and screening inhibitor libraries. To identify a soluble substrate for use in the study of rhomboid proteases, an array of internally quenched peptides were assayed with HiGlpG, EcGlpG and PsAarA from Providencia stuartti. One substrate was identified that was cleaved by all three rhomboid proteases, with HiGlpG having the highest cleavage efficiency. Mass spectrometry analysis determined that all enzymes hydrolyze this substrate between norvaline and tryptophan. Kinetic analysis in both detergent and bicellular systems demonstrated that this substrate can be cleaved in solution and in the lipid environment. The substrate was subsequently used to screen a panel of benzoxazin-4-one inhibitors to validate its use in inhibitor discovery.


Subject(s)
Escherichia coli Proteins/antagonists & inhibitors , Peptide Hydrolases/metabolism , Peptides/pharmacology , Chromatography, Liquid , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Haemophilus influenzae/enzymology , Kinetics , Mass Spectrometry , Protease Inhibitors/pharmacology , Recombinant Proteins/metabolism
7.
Biophys J ; 110(6): 1379-90, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-27028647

ABSTRACT

Denaturant-induced unfolding of helical membrane proteins provides insights into their mechanism of folding and domain organization, which take place in the chemically heterogeneous, anisotropic environment of a lipid membrane. Rhomboid proteases are intramembrane proteases that play key roles in various diseases. Crystal structures have revealed a compact helical bundle with a buried active site, which requires conformational changes for the cleavage of transmembrane substrates. A dimeric form of the rhomboid protease has been shown to be important for activity. In this study, we examine the mechanism of refolding for two distinct rhomboids to gain insight into their secondary structure-activity relationships. Although helicity is largely abolished in the unfolded states of both proteins, unfolding is completely reversible for HiGlpG but only partially reversible for PsAarA. Refolding of both proteins results in reassociation of the dimer, with a 90% regain of catalytic activity for HiGlpG but only a 70% regain for PsAarA. For both proteins, a broad, gradual transition from the native, folded state to the denatured, partly unfolded state was revealed with the aid of circular dichroism spectroscopy as a function of denaturant concentration, thus arguing against a classical two-state model as found for many globular soluble proteins. Thermal denaturation has irreversible destabilizing effects on both proteins, yet reveals important functional details regarding substrate accessibility to the buried active site. This concerted biophysical and functional analysis demonstrates that HiGlpG, with a simple six-transmembrane-segment organization, is more robust than PsAarA, which has seven predicted transmembrane segments, thus rendering HiGlpG amenable to in vitro studies of membrane-protein folding.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Endopeptidases/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Folding , Chromatography, Gel , Circular Dichroism , Endopeptidases/chemistry , Haemophilus influenzae/metabolism , Kinetics , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Denaturation , Protein Multimerization , Protein Refolding , Protein Structure, Secondary , Providencia/metabolism , Temperature , Time Factors
8.
Biochim Biophys Acta ; 1850(9): 1921-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26080001

ABSTRACT

BACKGROUND: Equilibrative nucleoside transporters (ENTs) facilitate the import of nucleosides and their analogs into cells in a bidirectional, non-concentrative manner. However, in contrast to their name, most characterized plant ENTs act in a concentrative manner. A direct characterization of any ENT protein has been hindered due to difficulties in overexpression and obtaining pure recombinant protein. METHODS: The equilibrative nucleoside transporter 7 from Arabidopsis thaliana (AtENT7) was expressed in Xenopus laevis oocytes to assess mechanism of substrate uptake. Recombinant protein fused to enhanced green fluorescent protein (eGFP) was expressed in Pichia pastoris to characterize its oligomeric state by gel filtration and substrate binding by microscale thermophoresis (MST). RESULTS: AtENT7 expressed in X. laevis oocytes works as a classic equilibrative transporter. The expression of AtENT7-eGFP in the P. pastoris system yielded milligram amounts of pure protein that exists as stable homodimers. The concentration dependent binding of purine and pyrimidine nucleosides to the purified recombinant protein, assessed by MST, confirmed that AtENT7-eGFP is properly folded. For the first time the binding of nucleobases was observed for AtENT7. SIGNIFICANCE: The availability of pure recombinant AtENT7 will permit detailed kinetic and structural studies of this unique member of the ENT family and, given the functional similarity to mammalian ENTs, will serve as a good model for understanding the structural basis of translocation mechanism for the family.


Subject(s)
Arabidopsis/metabolism , Equilibrative Nucleoside Transport Proteins/genetics , Recombinant Proteins/biosynthesis , Animals , Equilibrative Nucleoside Transport Proteins/isolation & purification , Equilibrative Nucleoside Transport Proteins/metabolism , Oocytes , Xenopus laevis/genetics
9.
Biol Chem ; 397(9): 907-19, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27071148

ABSTRACT

Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6-3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis.


Subject(s)
Biocatalysis , Cell Membrane/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Proteolysis , Catalytic Domain , Conserved Sequence , Kinetics , Molecular Dynamics Simulation , Mutagenesis , Peptide Hydrolases/genetics , Protein Stability , Providencia/enzymology
10.
ACS Bio Med Chem Au ; 3(6): 528-541, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38144257

ABSTRACT

This study explores the relationship between structural alterations of nirmatrelvir, such as homologation and deuteration, and metabolic stability of newly synthesized derivatives. We developed a reliable synthetic protocol toward dideutero-nirmatrelvir and its homologated analogues with high isotopic incorporation. Deuteration of the primary metabolic site of nirmatrelvir provides a 3-fold improvement of its human microsomal stability but is accompanied by an increased metabolism rate at secondary sites. Homologation of the lactam ring allows the capping group modification to decrease and delocalize the molecule's lipophilicity, reducing the metabolic rate at secondary sites. The effect of deuteration was less pronounced for the 6-membered lactam than for its 5-membered analogue in human microsomes, but the trend is reversed in the case of mouse microsomes. X-ray data revealed that the homologation of the lactam ring favors the orientation of the drug's nitrile warhead for interaction with the catalytic sulfur of the SARS-CoV-2 Mpro, improving its binding. Comparable potency against SARS-CoV-2 Mpro from several variants of concern and selectivity over human cysteine proteases cathepsin B, L, and S was observed for the novel deuterated/homologated derivative and nirmatrelvir. Synthesized compounds displayed a large interspecies variability in hamster, rat, and human hepatocyte stability assays. Overall, we aimed to apply a rational approach in changing the physicochemical properties of the drug to refine its biochemical and biological parameters.

11.
ACS Cent Sci ; 9(4): 696-708, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122453

ABSTRACT

The main protease of SARS-CoV-2 (Mpro) is the most promising drug target against coronaviruses due to its essential role in virus replication. With newly emerging variants there is a concern that mutations in Mpro may alter the structural and functional properties of protease and subsequently the potency of existing and potential antivirals. We explored the effect of 31 mutations belonging to 5 variants of concern (VOCs) on catalytic parameters and substrate specificity, which revealed changes in substrate binding and the rate of cleavage of a viral peptide. Crystal structures of 11 Mpro mutants provided structural insight into their altered functionality. Additionally, we show Mpro mutations influence proteolysis of an immunomodulatory host protein Galectin-8 (Gal-8) and a subsequent significant decrease in cytokine secretion, providing evidence for alterations in the escape of host-antiviral mechanisms. Accordingly, mutations associated with the Gamma VOC and highly virulent Delta VOC resulted in a significant increase in Gal-8 cleavage. Importantly, IC50s of nirmatrelvir (Pfizer) and our irreversible inhibitor AVI-8053 demonstrated no changes in potency for both drugs for all mutants, suggesting Mpro will remain a high-priority antiviral drug candidate as SARS-CoV-2 evolves.

12.
Biochem Cell Biol ; 90(3): 351-61, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22332934

ABSTRACT

Lactoferrin (Lf) is a bi-lobed, iron-binding protein found on mucosal surfaces and at sites of inflammation. Gram-negative pathogens from the Neisseriaceae and Moraxellaceae families are capable of using Lf as a source of iron for growth through a process mediated by a bacterial surface receptor that directly binds host Lf. This receptor consists of an integral outer membrane protein, lactoferrin binding protein A (LbpA), and a surface lipoprotein, lactoferrin binding protein B (LbpB). The N-lobe of the homologous transferrin binding protein B, TbpB, has been shown to facilitate transferrin binding in the process of iron acquisition. Currently there is little known about the role of LbpB in iron acquisition or how Lf interacts with the bacterial receptor proteins. No structural information on any LbpB or domain is available. In this study, we express and purify from Escherichia coli the full-length LbpB and the N-lobe of LbpB from the bovine pathogen Moraxella bovis for crystallization trials. We demonstrate that M. bovis LbpB binds to bovine but not human Lf. We also report the crystal structure of the N-terminal lobe of LbpB from M. bovis and compare it with the published structures of TbpB to speculate on the process of Lf mediated iron acquisition.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Lactoferrin/chemistry , Moraxella bovis , Amino Acid Sequence , Animals , Cattle , Conserved Sequence , Crystallography, X-Ray , Escherichia coli , Humans , Iron , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Structural Homology, Protein , Surface Properties
13.
Front Chem ; 10: 852210, 2022.
Article in English | MEDLINE | ID: mdl-35281564

ABSTRACT

Coronaviruses infect a variety of hosts in the animal kingdom, and while each virus is taxonomically different, they all infect their host via the same mechanism. The coronavirus main protease (Mpro, also called 3CLpro), is an attractive target for drug development due to its essential role in mediating viral replication and transcription. An Mpro inhibitor, GC376, has been shown to treat feline infectious peritonitis (FIP), a fatal infection in cats caused by internal mutations in the feline enteric coronavirus (FECV). Recently, our lab demonstrated that the feline drug, GC373, and prodrug, GC376, are potent inhibitors of SARS-CoV-2 Mpro and solved the structures in complex with the drugs; however, no crystal structures of the FIP virus (FIPV) Mpro with the feline drugs have been published so far. Here, we present crystal structures of FIPV Mpro-GC373/GC376 complexes, revealing the inhibitors covalently bound to Cys144 in the active site, similar to SARS-CoV-2 Mpro. Additionally, GC376 has a higher affinity for FIPV Mpro with lower nanomolar Ki values compared to SARS-CoV and SARS-CoV-2 Mpro. We also show that improved derivatives of GC376 have higher potency for FIPV Mpro. Since GC373 and GC376 represent strong starting points for structure-guided drug design, determining the crystal structures of FIPV Mpro with these inhibitors are important steps in drug optimization and structure-based broad-spectrum antiviral drug discovery.

14.
J Med Chem ; 65(4): 2905-2925, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34242027

ABSTRACT

Recurring coronavirus outbreaks, such as the current COVID-19 pandemic, establish a necessity to develop direct-acting antivirals that can be readily administered and are active against a broad spectrum of coronaviruses. Described in this Article are novel α-acyloxymethylketone warhead peptidomimetic compounds with a six-membered lactam glutamine mimic in P1. Compounds with potent SARS-CoV-2 3CL protease and in vitro viral replication inhibition were identified with low cytotoxicity and good plasma and glutathione stability. Compounds 15e, 15h, and 15l displayed selectivity for SARS-CoV-2 3CL protease over CatB and CatS and superior in vitro SARS-CoV-2 antiviral replication inhibition compared with the reported peptidomimetic inhibitors with other warheads. The cocrystallization of 15l with SARS-CoV-2 3CL protease confirmed the formation of a covalent adduct. α-Acyloxymethylketone compounds also exhibited antiviral activity against an alphacoronavirus and non-SARS betacoronavirus strains with similar potency and a better selectivity index than remdesivir. These findings demonstrate the potential of the substituted heteroaromatic and aliphatic α-acyloxymethylketone warheads as coronavirus inhibitors, and the described results provide a basis for further optimization.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/metabolism , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Glutamine/chemistry , Glutamine/pharmacology , Humans , Ketones/chemistry , Ketones/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Peptidomimetics/chemistry , SARS-CoV-2/enzymology , Virus Replication/drug effects , COVID-19 Drug Treatment
15.
Methods Mol Biol ; 2302: 1-20, 2021.
Article in English | MEDLINE | ID: mdl-33877619

ABSTRACT

Rhomboid proteases are a ubiquitous superfamily of serine intramembrane peptidases that play a role in a wide variety of cellular processes. The mammalian mitochondrial rhomboid protease, Presenilin-Associated Rhomboid Like (PARL), is a critical regulator of mitochondrial homeostasis through the cleavage of its substrates, which have roles in mitochondrial quality control and apoptosis. However, neither structural nor functional information for this important protease is available, because the expression of eukaryotic membrane proteins to sufficient levels in an active form often represents a major bottleneck for in vitro studies. Here we present an optimized protocol for expression and purification of the human PARL protease using the eukaryotic expression host Pichia pastoris. The PARL gene construct was generated in tandem with green fluorescent protein (GFP), which allowed for the selection of high expressing clones and monitoring during the large-scale expression and purification steps. We discuss the production protocol with precise details for each step. The protocol yields 1 mg of pure PARL per liter of yeast culture.


Subject(s)
Metalloproteases/isolation & purification , Mitochondrial Proteins/isolation & purification , Saccharomycetales/growth & development , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Metalloproteases/genetics , Mitochondrial Proteins/genetics , Recombinant Proteins/isolation & purification , Saccharomycetales/genetics , Transformation, Genetic
16.
Microbiome ; 9(1): 229, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34814938

ABSTRACT

BACKGROUND: Carbohydrate-active enzymes (CAZymes) form the most widespread and structurally diverse set of enzymes involved in the breakdown, biosynthesis, or modification of lignocellulose that can be found in living organisms. However, the structural diversity of CAZymes has rendered the targeted discovery of novel enzymes extremely challenging, as these proteins catalyze many different chemical reactions and are sourced by a vast array of microbes. Consequently, many uncharacterized members of CAZyme families of interest have been overlooked by current methodologies (e.g., metagenomic screening) used to discover lignocellulolytic enzymes. RESULTS: In the present study, we combined phenotype-based selective pressure on the rumen microbiota with targeted functional profiling to guide the discovery of unknown CAZymes. In this study, we found 61 families of glycoside hydrolases (GH) (out of 182 CAZymes) from protein sequences deposited in the CAZy database-currently associated with more than 20,324 microbial genomes. Phenotype-based selective pressure on the rumen microbiome showed that lignocellulolytic bacteria (e.g., Fibrobacter succinogenes, Butyrivibrio proteoclasticus) and three GH families (e.g., GH11, GH13, GH45) exhibited an increased relative abundance in the rumen of feed efficient cattle when compared to their inefficient counterparts. These results paved the way for the application of targeted functional profiling to screen members of the GH11 and GH45 families against a de novo protein reference database comprised of 1184 uncharacterized enzymes, which led to the identification of 18 putative xylanases (GH11) and three putative endoglucanases (GH45). The biochemical proof of the xylanolytic activity of the newly discovered enzyme validated the computational simulations and demonstrated the stability of the most abundant xylanase. CONCLUSIONS: These findings contribute to the discovery of novel enzymes for the breakdown, biosynthesis, or modification of lignocellulose and demonstrate that the rumen microbiome is a source of promising enzyme candidates for the biotechnology industry. The combined approaches conceptualized in this study can be adapted to any microbial environment, provided that the targeted microbiome is easy to manipulate and facilitates enrichment for the microbes of interest. Video Abstract.


Subject(s)
Microbiota , Rumen , Animals , Cattle , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Metagenome , Metagenomics , Rumen/microbiology
17.
J Mol Biol ; 433(13): 167003, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33895266

ABSTRACT

The main protease (Mpro, also known as 3CL protease) of SARS-CoV-2 is a high priority drug target in the development of antivirals to combat COVID-19 infections. A feline coronavirus antiviral drug, GC376, has been shown to be effective in inhibiting the SARS-CoV-2 main protease and live virus growth. As this drug moves into clinical trials, further characterization of GC376 with the main protease of coronaviruses is required to gain insight into the drug's properties, such as reversibility and broad specificity. Reversibility is an important factor for therapeutic proteolytic inhibitors to prevent toxicity due to off-target effects. Here we demonstrate that GC376 has nanomolar Ki values with the Mpro from both SARS-CoV-2 and SARS-CoV strains. Restoring enzymatic activity after inhibition by GC376 demonstrates reversible binding with both proteases. In addition, the stability and thermodynamic parameters of both proteases were studied to shed light on physical chemical properties of these viral enzymes, revealing higher stability for SARS-CoV-2 Mpro. The comparison of a new X-ray crystal structure of Mpro from SARS-CoV complexed with GC376 reveals similar molecular mechanism of inhibition compared to SARS-CoV-2 Mpro, and gives insight into the broad specificity properties of this drug. In both structures, we observe domain swapping of the N-termini in the dimer of the Mpro, which facilitates coordination of the drug's P1 position. These results validate that GC376 is a drug with an off-rate suitable for clinical trials.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cats , Coronavirus 3C Proteases/metabolism , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Sulfonic Acids , Thermodynamics , Viral Nonstructural Proteins/chemistry , COVID-19 Drug Treatment
18.
RSC Med Chem ; 12(10): 1722-1730, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34778773

ABSTRACT

Tragically, the death toll from the COVID-19 pandemic continues to rise, and with variants being observed around the globe new therapeutics, particularly direct-acting antivirals that are easily administered, are desperately needed. Studies targeting the SARS-CoV-2 3CL protease, which is critical for viral replication, with different peptidomimetics and warheads is an active area of research for development of potential drugs. To date, however, only a few publications have evaluated the nitrile warhead as a viral 3CL protease inhibitor, with only modest activity reported. This article describes our investigation of P3 4-methoxyindole peptidomimetic analogs with select P1 and P2 groups with a nitrile warhead that are potent inhibitors of SARS-CoV-2 3CL protease and demonstrate in vitro SARS-CoV-2 antiviral activity. A selectivity for SARS-CoV-2 3CL protease over human cathepsins B, S and L was also observed with the nitrile warhead, which was superior to that with the aldehyde warhead. A co-crystal structure with SARS-CoV-2 3CL protease and a reversibility study indicate that a reversible, thioimidate adduct is formed when the catalytic sulfur forms a covalent bond with the carbon of the nitrile. This effort also identified efflux as a property limiting antiviral activity of these compounds, and together with the positive attributes described these results provide insight for further drug development of novel nitrile peptidomimetics targeting SARS-CoV-2 3CL protease.

19.
Eur J Med Chem ; 222: 113584, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34118724

ABSTRACT

Replication of SARS-CoV-2, the coronavirus causing COVID-19, requires a main protease (Mpro) to cleave viral proteins. Consequently, Mpro is a target for antiviral agents. We and others previously demonstrated that GC376, a bisulfite prodrug with efficacy as an anti-coronaviral agent in animals, is an effective inhibitor of Mpro in SARS-CoV-2. Here, we report structure-activity studies of improved GC376 derivatives with nanomolar affinities and therapeutic indices >200. Crystallographic structures of inhibitor-Mpro complexes reveal that an alternative binding pocket in Mpro, S4, accommodates the P3 position. Alternative binding is induced by polar P3 groups or a nearby methyl. NMR and solubility studies with GC376 show that it exists as a mixture of stereoisomers and forms colloids in aqueous media at higher concentrations, a property not previously reported. Replacement of its Na+ counter ion with choline greatly increases solubility. The physical, biochemical, crystallographic, and cellular data reveal new avenues for Mpro inhibitor design.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , Sulfonic Acids/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Humans , Micelles , Microbial Sensitivity Tests , Molecular Structure , Protein Binding , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , SARS-CoV-2/enzymology , Solubility , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/metabolism , Vero Cells
20.
Vaccine ; 39(40): 5769-5779, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34481699

ABSTRACT

SARS-CoV-2 is the etiological agent of COVID19. There are currently several licensed vaccines approved for human use and most of them target the spike protein in the virion envelope to induce protective immunity. Recently, variants that spread more quickly have emerged. There is evidence that some of these variants are less sensitive to neutralization in vitro, but it is not clear whether they can evade vaccine induced protection. In this study, we tested SARS-CoV-2 spike RBD as a vaccine antigen and explored the effect of formulation with Alum/MPLA or AddaS03 adjuvants. Our results show that RBD induces high titers of neutralizing antibodies and activates strong cellular immune responses. There is also significant cross-neutralization of variants B.1.1.7 and B.1.351 and to a lesser extent, SARS-CoV-1. These results indicate that recombinant RBD can be a viable candidate as a stand-alone vaccine or as a booster shot to diversify our strategy for COVID19 protection.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL