ABSTRACT
ABSTRACT: Hospital-acquired infections caused by extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli are a global problem. Healthy people can carry ESBL-producing E. coli in the intestines; thus, E. coli from healthy people can potentially cause hospital-acquired infections. Therefore, the transmission routes of ESBL-producing E. coli from healthy persons should be determined. A foodborne outbreak of human norovirus (HuNoV) GII occurred at a restaurant in Shizuoka, Japan, in 2018. E. coli O25:H4 was isolated from some of the HuNoV-infected customers. Pulsed-field gel electrophoresis showed that these E. coli O25:H4 strains originated from one clone. Because the only epidemiological link among the customers was eating food from this restaurant, the customers were concurrently infected with E. coli O25:H4 and HuNoV GII via the restaurant food. Whole genome analysis revealed that the E. coli O25:H4 strains possessed genes for regulating intracellular iron and expressing the flagellum and flagella. Extraintestinal pathogenic E. coli often express these genes on the chromosome. Additionally, the E. coli O25:H4 strains had plasmids harboring nine antimicrobial resistance genes. These strains harbored ESBL-encoding blaCTX-M-14 genes on two loci of the chromosome and had higher ESBL activity. Multilocus sequence typing and fimH subtyping revealed that the E. coli O25:H4 strains from the outbreak belonged to the subclonal group, ST131-fimH30R, which has been driving ESBL epidemics in Japan. Because the E. coli O25:H4 strains isolated in the outbreak belonged to a subclonal group spreading in Japan, foods contaminated with ESBL-producing E. coli might contribute to spreading these strains among healthy persons. The isolated E. coli O25:H4 strains produced ESBL and contained plasmids with multiple antimicrobial resistance genes, which may make it difficult to select antimicrobials for treating extraintestinal infections caused by these strains.