Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Genomics ; 112(5): 3207-3217, 2020 09.
Article in English | MEDLINE | ID: mdl-32526247

ABSTRACT

Cancer subtype stratification, which may help to make a better decision in treating cancerous patients, is one of the most crucial and challenging problems in cancer studies. To this end, various computational methods such as Feature selection, which enhances the accuracy of the classification and is an NP-Hard problem, have been proposed. However, the performance of the applied methods is still low and can be increased by the state-of-the-art and efficient methods. We used 11 efficient and popular meta-heuristic algorithms including WCC, LCA, GA, PSO, ACO, ICA, LA, HTS, FOA, DSOS and CUK along with SVM classifier to stratify human breast cancer molecular subtypes using mRNA and micro-RNA expression data. The applied algorithms select 186 mRNAs and 116 miRNAs out of 9692 mRNAs and 489 miRNAs, respectively. Although some of the selected mRNAs and miRNAs are common in different algorithms results, six miRNAs including miR-190b, miR-18a, miR-301a, miR-34c-5p, miR-18b, and miR-129-5p were selected by equal or more than three different algorithms. Further, six mRNAs, including HAUS6, LAMA2, TSPAN33, PLEKHM3, GFRA3, and DCBLD2, were chosen through two different algorithms. We have reported these miRNAs and mRNAs as important diagnostic biomarkers to the stratification of breast cancer subtypes. By investigating the literature, it is also observed that most of our reported mRNAs and miRNAs have been proposed and introduced as biomarkers in cancer subtypes stratification.


Subject(s)
Algorithms , Breast Neoplasms/classification , MicroRNAs/metabolism , RNA, Messenger/metabolism , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Computer Heuristics , Female , Humans , Support Vector Machine
2.
Carbohydr Res ; 345(2): 243-9, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-19963209

ABSTRACT

The chaperone action of alpha-cyclodextrin (alpha-CyD), based on providing beneficial microenvironment of hydrophobic nanocavity to form molecular complex with alcohol dehydrogenase (ADH) was examined by experimental and computational techniques. The results of UV-vis and dynamic light scattering (DLS) indicated that the chaperone-like activity of alpha-CyD depends on molecular complex formation between alpha-CyD and ADH, which caused to decrease the amount and size of polymerized molecules. Computational calculations of molecular dynamic (MD) simulations and blind docking (BD) demonstrated that alpha-CyD acts as an artificial chaperone because of its high affinity to the region of ADH's two chains interface. The hydrophobic nanocavity of alpha-CyD has the ability to form inclusion complex due to the presence of phenyl ring of aromatic phenylalanine (Phe) residue in the dimeric intersection area. Delocalization of ADH subunits, which causes the exposure of Phe110, takes part in the enzyme polymerization and has proven to be beneficial for aggregation inhibition and solubility enhancement within the host alpha-CyD-nanocavity.


Subject(s)
Alcohol Dehydrogenase/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Chaperones/metabolism , Nanostructures , alpha-Cyclodextrins/chemistry , alpha-Cyclodextrins/metabolism , Alcohol Dehydrogenase/metabolism , Animals , Drug Design , Ligands , Molecular Dynamics Simulation , Protein Multimerization , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL