Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Arterioscler Thromb Vasc Biol ; 44(4): 954-968, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385292

ABSTRACT

BACKGROUND: Venous thromboembolism is a major health problem. After thrombus formation, its resolution is essential to re-establish blood flow, which is crucially mediated by infiltrating neutrophils and monocytes in concert with activated platelets and endothelial cells. Thus, we aimed to modulate leukocyte function during thrombus resolution post-thrombus formation by blocking P-selectin/CD62P-mediated cell interactions. METHODS: Thrombosis was induced by inferior vena cava stenosis through ligation in mice. After 1 day, a P-selectin-blocking antibody or isotype control was administered and thrombus composition and resolution were analyzed. RESULTS: Localizing neutrophils and macrophages in thrombotic lesions of wild-type mice revealed that these cells enter the thrombus and vessel wall from the caudal end. Neutrophils were predominantly present 1 day and monocytes/macrophages 3 days after vessel ligation. Blocking P-selectin reduced circulating platelet-neutrophil and platelet-Ly6Chigh monocyte aggregates near the thrombus, and diminished neutrophils and Ly6Chigh macrophages in the cranial thrombus part compared with isotype-treated controls. Depletion of neutrophils 1 day after thrombus initiation did not phenocopy P-selectin inhibition but led to larger thrombi compared with untreated controls. In vitro, P-selectin enhanced human leukocyte function as P-selectin-coated beads increased reactive oxygen species production by neutrophils and tissue factor expression of classical monocytes. Accordingly, P-selectin inhibition reduced oxidative burst in the thrombus and tissue factor expression in the adjacent vessel wall. Moreover, blocking P-selectin reduced thrombus density determined by scanning electron microscopy and increased urokinase-type plasminogen activator levels in the thrombus, which accelerated caudal fibrin degradation from day 3 to day 14. This accelerated thrombus resolution as thrombus volume declined more rapidly after blocking P-selectin. CONCLUSIONS: Inhibition of P-selectin-dependent activation of monocytes and neutrophils accelerates venous thrombosis resolution due to reduced infiltration and activation of innate immune cells at the site of thrombus formation, which prevents early thrombus stabilization and facilitates fibrinolysis.


Subject(s)
Monocytes , Thrombosis , Mice , Humans , Animals , Monocytes/pathology , P-Selectin , Endothelial Cells , Thromboplastin , Neutrophil Infiltration , Neutrophils
2.
Anal Chem ; 96(23): 9643-9652, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38795073

ABSTRACT

Signaling lipids are key players in cellular processes. Despite their importance, no method currently allows their comprehensive monitoring in one analytical run. Challenges include a wide dynamic range, isomeric and isobaric species, and unwanted interaction along the separation path. Herein, we present a sensitive and robust targeted liquid chromatography-mass spectrometry (LC-MS/MS) approach to overcome these challenges, covering a broad panel of 17 different signaling lipid classes. It involves a simple one-phase sample extraction and lipid analysis using bioinert reversed-phase liquid chromatography coupled to targeted mass spectrometry. The workflow shows excellent sensitivity and repeatability in different biological matrices, enabling the sensitive and robust monitoring of 388 lipids in a single run of only 20 min. To benchmark our workflow, we characterized the human plasma signaling lipidome, quantifying 307 endogenous molecular lipid species. Furthermore, we investigated the signaling lipidome during platelet activation, identifying numerous regulations along important lipid signaling pathways. This highlights the potential of the presented method to investigate signaling lipids in complex biological systems, enabling unprecedentedly comprehensive analysis and direct insight into signaling pathways.


Subject(s)
Lipids , Signal Transduction , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Humans , Lipids/analysis , Lipids/blood , Chromatography, Liquid/methods , Lipidomics/methods , Platelet Activation , Liquid Chromatography-Mass Spectrometry
3.
Blood ; 140(24): 2626-2643, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36026606

ABSTRACT

S100A8/A9, also known as "calprotectin" or "MRP8/14," is an alarmin primarily secreted by activated myeloid cells with antimicrobial, proinflammatory, and prothrombotic properties. Increased plasma levels of S100A8/A9 in thrombo-inflammatory diseases are associated with thrombotic complications. We assessed the presence of S100A8/A9 in the plasma and lung autopsies from patients with COVID-19 and investigated the molecular mechanism by which S100A8/A9 affects platelet function and thrombosis. S100A8/A9 plasma levels were increased in patients with COVID-19 and sustained high levels during hospitalization correlated with poor outcomes. Heterodimeric S100A8/A9 was mainly detected in neutrophils and deposited on the vessel wall in COVID-19 lung autopsies. Immobilization of S100A8/A9 with collagen accelerated the formation of a fibrin-rich network after perfusion of recalcified blood at venous shear. In vitro, platelets adhered and partially spread on S100A8/A9, leading to the formation of distinct populations of either P-selectin or phosphatidylserine (PS)-positive platelets. By using washed platelets, soluble S100A8/A9 induced PS exposure but failed to induce platelet aggregation, despite GPIIb/IIIa activation and alpha-granule secretion. We identified GPIbα as the receptor for S100A8/A9 on platelets inducing the formation of procoagulant platelets with a supporting role for CD36. The effect of S100A8/A9 on platelets was abolished by recombinant GPIbα ectodomain, platelets from a patient with Bernard-Soulier syndrome with GPIb-IX-V deficiency, and platelets from mice deficient in the extracellular domain of GPIbα. We identified the S100A8/A9-GPIbα axis as a novel targetable prothrombotic pathway inducing procoagulant platelets and fibrin formation, in particular in diseases associated with high levels of S100A8/A9, such as COVID-19.


Subject(s)
Blood Platelets , COVID-19 , Calgranulin A , Calgranulin B , Platelet Glycoprotein GPIb-IX Complex , Animals , Mice , Blood Platelets/metabolism , Calgranulin A/metabolism , COVID-19/metabolism , Fibrin/metabolism , Phosphatidylserines/metabolism , Platelet Aggregation , Humans , Calgranulin B/metabolism , Autopsy , Platelet Glycoprotein GPIb-IX Complex/metabolism
4.
J Cell Biochem ; 124(5): 687-700, 2023 05.
Article in English | MEDLINE | ID: mdl-36946436

ABSTRACT

Experimental data suggested activation of yes-associated protein (YAP-1) as a critical regulator of liver regeneration (LR). Serotonin (5-HT) promotes LR in rodent models and has been proposed to act via YAP-1. How 5-HT affects LR is incompletely understood. A possible mechanism how 5-HT affects human LR was explored. Sixty-one patients were included. Tissue samples prior and 2 h after induction of LR were collected. Circulating levels of 5-HT and osteopontin (OPN) were assessed. YAP-1, its phosphorylation states, cytokeratin 19 (CK-19) and OPN were assessed using immunofluorescence. A mouse model of biliary epithelial cells (BECs) specific deletion of YAP/TAZ was developed. YAP-1 increased as early as 2 h after induction of LR (p = 0.025) predominantly in BECs. BEC specific deletion of YAP/TAZ reduced LR after 70% partial hepatectomy in mice (Ki67%, p < 0.001). SSRI treatment, depleting intra-platelet 5-HT, abolished YAP-1 and OPN induction upon LR. Portal vein 5-HT levels correlated with intrahepatic YAP-1 expression upon LR (R = 0.703, p = 0.035). OPN colocalized with YAP-1 in BECs and its circulating levels increased in the liver vein 2 h after induction of LR (p = 0.017). In the context of LR tyrosine-phosphorylated YAP-1 significantly increased (p = 0.042). Stimulating BECs with 5-HT resulted in increased YAP-1 activation via tyrosine-phosphorylation and subsequently increased OPN expression. BECs YAP-1 appears to be critical for LR in mice and humans. Our evidence suggests that 5-HT, at least in part, exerts its pro-regenerative effects via YAP-1 tyrosine-phosphorylation in BECs and subsequent OPN-dependent paracrine immunomodulation.


Subject(s)
Liver Regeneration , Serotonin , Animals , Humans , Mice , Cell Proliferation , Epithelial Cells/metabolism , Liver/surgery , Liver/metabolism , Liver Regeneration/physiology , Phosphorylation , Serotonin/pharmacology , Serotonin/metabolism , Tyrosine
5.
Ann Surg ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37860868

ABSTRACT

OBJECTIVE AND BACKGROUND: Clinically significant posthepatectomy liver failure (PHLF B+C) remains the main cause of mortality after major hepatic resection. This study aimed to establish an APRI+ALBI, aspartate aminotransferase to platelet ratio (APRI) combined with albumin-bilirubin grade (ALBI), based multivariable model (MVM) to predict PHLF and compare its performance to indocyanine green clearance (ICG-R15 or ICG-PDR) and albumin-ICG evaluation (ALICE). METHODS: 12,056 patients from the National Surgical Quality Improvement Program (NSQIP) database were used to generate a MVM to predict PHLF B+C. The model was determined using stepwise backwards elimination. Performance of the model was tested using receiver operating characteristic curve analysis and validated in an international cohort of 2,525 patients. In 620 patients, the APRI+ALBI MVM, trained in the NSQIP cohort, was compared with MVM's based on other liver function tests (ICG clearance, ALICE) by comparing the areas under the curve (AUC). RESULTS: A MVM including APRI+ALBI, age, sex, tumor type and extent of resection was found to predict PHLF B+C with an AUC of 0.77, with comparable performance in the validation cohort (AUC 0.74). In direct comparison with other MVM's based on more expensive and time-consuming liver function tests (ICG clearance, ALICE), the APRI+ALBI MVM demonstrated equal predictive potential for PHLF B+C. A smartphone application for calculation of the APRI+ALBI MVM was designed. CONCLUSION: Risk assessment via the APRI+ALBI MVM for PHLF B+C increases preoperative predictive accuracy and represents an universally available and cost-effective risk assessment prior to hepatectomy, facilitated by a freely available smartphone app.

6.
Anal Chem ; 95(41): 15227-15235, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37782305

ABSTRACT

Quantitative sphingolipid analysis is crucial for understanding the roles of these bioactive molecules in various physiological and pathological contexts. Molecular sphingolipid species are typically quantified using sphingoid base-derived fragments relative to a class-specific internal standard. However, the commonly employed "one standard per class" strategy fails to account for fragmentation differences presented by the structural diversity of sphingolipids. To address this limitation, we developed a novel approach for quantitative sphingolipid analysis. This approach utilizes fragmentation models to correct for structural differences and thus overcomes the limitations associated with using a limited number of standards for quantification. Importantly, our method is independent of the internal standard, instrumental setup, and collision energy. Furthermore, we integrated this method into a user-friendly KNIME workflow. The validation results illustrate the effectiveness of our approach in accurately quantifying ceramide subclasses from various biological matrices. This breakthrough opens up new avenues for exploring sphingolipid metabolism and gaining insights into its implications.


Subject(s)
Nonlinear Dynamics , Sphingolipids , Sphingolipids/metabolism , Ceramides
7.
Hepatology ; 75(5): 1095-1109, 2022 05.
Article in English | MEDLINE | ID: mdl-34927748

ABSTRACT

BACKGROUND AND AIMS: Lipopolysaccharide (LPS) clearance is delayed in cholestatic liver diseases. While compromised clearance by Kupffer cells (KCs) is involved, the role of LPS uptake into hepatocytes and canalicular excretion remains unclear. APPROACH AND RESULTS: Wild-type (WT) and bile salt export pump (Bsep) knockout (KO) mice were challenged i.p. with LPS. Liver injury was assessed by serum biochemistry, histology, molecular inflammation markers, and immune cell infiltration. LPS concentrations were determined in liver tissue and bile. Subcellular kinetics of fluorescently labeled LPS was visualized by intravital two-photon microscopy, and the findings in Bsep KO mice were compared to common bile duct-ligated (BDL) and multidrug resistance protein 2 (Mdr2) KO mice. Changes in gut microbiota composition were evaluated by 16S ribosomal RNA gene amplicon sequencing analysis. Bsep KO mice developed more pronounced LPS-induced liver injury and inflammatory signaling, with subsequently enhanced production of proinflammatory cytokines and aggravated hepatic immune cell infiltration. After LPS administration, its concentrations were higher in liver but lower in bile of Bsep KO compared to WT mice. Intravital imaging of LPS showed a delayed clearance from sinusoidal blood with a basolateral uptake block into hepatocytes and reduced canalicular secretion. Moreover, LPS uptake into KCs was reduced. Similar findings with respect to hepatic LPS clearance were obtained in BDL and Mdr2 KO mice. Pretreatment with the microtubule inhibitor colchicine inhibited biliary excretion of LPS in WT mice, indicating that LPS clearance is microtubule-dependent. Microbiota analysis showed no change of the gut microbiome between WT and Bsep KO mice at baseline but major changes upon LPS challenge in WT mice. CONCLUSIONS: Absence of Bsep and cholestasis in general impair LPS clearance by a basolateral uptake block into hepatocytes and consequently less secretion into canaliculi. Impaired LPS removal aggravates hepatic inflammation in cholestasis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Cholestasis , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Animals , Bile Acids and Salts/metabolism , Cholestasis/pathology , Endotoxins , Inflammation/metabolism , Kinetics , Lipopolysaccharides/metabolism , Liver/pathology , Mice , Mice, Knockout
8.
Blood ; 137(10): 1406-1415, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33512411

ABSTRACT

Thrombosis and its associated complications are a major cause of morbidity and mortality worldwide. Microvesicles (MVs), a class of extracellular vesicles, are increasingly recognized as mediators of coagulation and biomarkers of thrombotic risk. Thus, identifying factors targeting MV-driven coagulation may help in the development of novel antithrombotic treatments. We have previously identified a subset of circulating MVs that is characterized by the presence of oxidation-specific epitopes and bound by natural immunoglobulin M (IgM) antibodies targeting these structures. This study investigated whether natural IgM antibodies, which are known to have important anti-inflammatory housekeeping functions, inhibit the procoagulatory properties of MVs. We found that the extent of plasma coagulation is inversely associated with the levels of both free and MV-bound endogenous IgM. Moreover, the oxidation epitope-specific natural IgM antibody LR04, which recognizes malondialdehyde adducts, reduced MV-dependent plasmatic coagulation and whole blood clotting without affecting thrombocyte aggregation. Intravenous injection of LR04 protected mice from MV-induced pulmonary thrombosis. Of note, LR04 competed the binding of coagulation factor X/Xa to MVs, providing a mechanistic explanation for its anticoagulatory effect. Thus, our data identify natural IgM antibodies as hitherto unknown modulators of MV-induced coagulation in vitro and in vivo and their prognostic and therapeutic potential in the management of thrombosis.


Subject(s)
Blood Coagulation , Cell-Derived Microparticles/metabolism , Immunoglobulin M/metabolism , Thrombosis/metabolism , Animals , Blood Platelets/cytology , Blood Platelets/metabolism , Humans , Immunoglobulin M/analysis , Mice, Inbred C57BL , Thrombosis/blood
9.
Curr Top Microbiol Immunol ; 436: 255-285, 2022.
Article in English | MEDLINE | ID: mdl-36243848

ABSTRACT

Platelets are unique anucleated blood cells that constantly patrol the vasculature to seal and prevent injuries in a process termed haemostasis. Thereby they rapidly adhere to the subendothelial matrix and recruit further platelets, resulting in platelet aggregates. Apart from their central role in haemostasis, they also kept some of their features inherited by their evolutionary ancestor-the haemocyte, which was also involved in immune defences. Together with leukocytes, platelets fight pathogenic invaders and guide many immune processes. In addition, they rely on several signalling pathways which are also relevant to immune cells. Among these, one of the central signalling hubs is the PI3K pathway. Signalling processes in platelets are unique as they lack a nucleus and therefore transcriptional regulation is absent. As a result, PI3K subclasses fulfil distinct roles in platelets compared to other cells. In contrast to leukocytes, the central PI3K subclass in platelet signalling is PI3K class Iß, which underlines the uniqueness of this cell type and opens new ways for potential platelet-specific pharmacologic inhibition. An overview of platelet function and signalling with emphasis on PI3K subclasses and their respective inhibitors is given in this chapter.


Subject(s)
Blood Platelets , Thrombosis , Blood Platelets/metabolism , Blood Platelets/pathology , Hemostasis/physiology , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Isoforms/metabolism , Thrombosis/metabolism , Thrombosis/pathology
10.
Infection ; 51(4): 851-858, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36083403

ABSTRACT

BACKGROUND: Tocilizumab and baricitinib are recommended treatment options for hospitalized COVID-19 patients requiring oxygen support. Literature about its efficacy and safety in a head-to-head comparison is scarce. METHODS: Hospitalized COVID-19 patients requiring oxygen were treated with tocilizumab or baricitinib additionally to dexamethasone. Tocilizumab was available from February till the 19th of September 2021 and baricitinib from 21st of September. The primary outcome was in-hospital mortality. Secondary outcome parameters were progression to mechanical ventilation (MV), length-of-stay (LOS) and potential side effects. RESULTS: 159 patients (tocilizumab 68, baricitinib 91) with a mean age of 60.5 years, 64% male were included in the study. Tocilizumab patients were admitted 1 day earlier, were in a higher WHO category at the time of inclusion and had a higher CRP level on admission and treatment initiation. Patients receiving Tocilizumab were treated with remdesivir more often and only patients in the baricitinib group were treated with monoclonal antibodies. Other characteristics did not differ significantly. In-hospital mortality (18% vs. 11%, p = 0.229), progression to MV (19% vs. 11%, p = 0.173) and LOS (13 vs. 12 days, p = 0.114) did not differ between groups. Side effects were equally distributed between groups, except ALAT elevation which was significantly more often observed in the tocilizumab group (43% vs. 25%, p = 0.021). CONCLUSIONS: In-hospital mortality, progression to MV and LOS were not significantly different in patients treated with tocilizumab or baricitinib additionally to standard of care. Both drugs seem equally effective but further head-to-head trials are needed.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Humans , Male , Middle Aged , Female , COVID-19 Drug Treatment , Oxygen , Treatment Outcome
11.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834530

ABSTRACT

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Subject(s)
Monoacylglycerol Lipases , Monoglycerides , Animals , Mice , Endocannabinoids/metabolism , Lipolysis , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/genetics
12.
J Hepatol ; 77(6): 1619-1630, 2022 12.
Article in English | MEDLINE | ID: mdl-35985549

ABSTRACT

BACKGROUND & AIMS: Surgical resection of the cancerous tissue represents one of the few curative treatment options for neoplastic liver disease. Such partial hepatectomy (PHx) induces hepatocyte hyperplasia, which restores liver function. PHx is associated with bacterial translocation, leading to an immediate immune response involving neutrophils and macrophages, which are indispensable for the priming phase of liver regeneration. Additionally, PHx induces longer-lasting intrahepatic apoptosis. Herein, we investigated the effect of apoptotic extracellular vesicles (aEVs) on neutrophil function and their role in this later phase of liver regeneration. METHODS: A total of 124 patients undergoing PHx were included in this study. Blood levels of the apoptosis marker caspase-cleaved cytokeratin-18 (M30) and circulating aEVs were analyzed preoperatively and on the first and fifth postoperative days. Additionally, the in vitro effects of aEVs on the secretome, phenotype and functions of neutrophils were investigated. RESULTS: Circulating aEVs increased at the first postoperative day and were associated with higher concentrations of M30, which was only observed in patients with complete liver recovery. Efferocytosis of aEVs by neutrophils induced an activated phenotype (CD11bhighCD16highCD66bhighCD62Llow); however, classical inflammatory responses such as NETosis, respiratory burst, degranulation, or secretion of pro-inflammatory cytokines were not observed. Instead, efferocytosing neutrophils released various growth factors including fibroblast growth factor-2 and hepatocyte growth factor (HGF). Accordingly, we observed an increase of HGF-positive neutrophils after PHx and a correlation of plasma HGF with M30 levels. CONCLUSIONS: These data suggest that the clearance of PHx-induced aEVs leads to a population of non-inflammatory but regenerative neutrophils, which may support human liver regeneration. LAY SUMMARY: In this study, we show that the surgical removal of a diseased part of the liver triggers a specific type of programmed cell death in the residual liver tissue. This results in the release of vesicles from dying cells into the blood, where they are cleared by circulating immune cells. These respond by secreting hepatocyte growth factors that could potentially support the regeneration of the liver remnant.


Subject(s)
Extracellular Vesicles , Focal Nodular Hyperplasia , Humans , Hepatectomy , Neutrophils , Biological Transport , Liver Regeneration
13.
Hepatology ; 73(5): 1956-1966, 2021 05.
Article in English | MEDLINE | ID: mdl-33078426

ABSTRACT

BACKGROUND AND AIMS: Platelet-stored serotonin critically affects liver regeneration in mice and humans. Selective serotonin reuptake inhibitors (SSRIs) and serotonin noradrenalin reuptake inhibitors (SNRIs) reduce intraplatelet serotonin. As SSRIs/SNRIs are now one of the most commonly prescribed drugs in the United States and Europe and given serotonin's impact on liver regeneration, we evaluated whether perioperative use of SSRIs/SNRIs affects outcome after hepatic resection. APPROACH AND RESULTS: Consecutive patients undergoing hepatic resection (n = 754) were retrospectively included from prospectively maintained databases from two European institutions. Further, an independent cohort of 495 patients from the United States was assessed to validate our exploratory findings. Perioperative intake of SSRIs/SNRIs was recorded, and patients were followed up for postoperative liver dysfunction (LD), morbidity, and mortality. Perioperative intraplatelet serotonin levels were significantly decreased in patients receiving SSRI/SNRI treatment. Patients treated with SSRIs/SNRIs showed a higher incidence of morbidity, severe morbidity, LD, and LD requiring intervention. Associations were confirmed in the independent validation cohort. Combined cohorts documented a significant increase in deleterious postoperative outcome (morbidity odds ratio [OR], 1.56; 95% confidence interval [CI], 1.07-2.31; severe morbidity OR, 1.86; 95% CI, 1.22-2.79; LD OR, 1.96; 95% CI, 1.23-3.06; LD requiring intervention OR, 2.22; 95% CI, 1.03-4.36). Further, multivariable analysis confirmed the independent association of SSRIs/SNRIs with postoperative LD, which was closely associated with postoperative 90-day mortality and 1-year overall survival. CONCLUSIONS: We observed a significant association of perioperative SSRI/SNRI intake with adverse postoperative outcome after hepatic resection. This indicates that SSRIs/SNRIs should be avoided perioperatively in patients undergoing hepatic resections.


Subject(s)
Hepatectomy , Perioperative Period , Selective Serotonin Reuptake Inhibitors/adverse effects , Adolescent , Adult , Aged , Aged, 80 and over , Blood Platelets/chemistry , Chemical and Drug Induced Liver Injury/etiology , Female , Hepatectomy/adverse effects , Hepatectomy/methods , Humans , Liver/surgery , Male , Middle Aged , Retrospective Studies , Serotonin/blood , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/therapeutic use , Young Adult
14.
RNA Biol ; 19(1): 963-979, 2022 01.
Article in English | MEDLINE | ID: mdl-35938548

ABSTRACT

SARS-CoV-2 tropism for the ACE2 receptor, along with the multifaceted inflammatory reaction, is likely to drive the generalized hypercoagulable and thrombotic state seen in patients with COVID-19. Using the original bioinformatic workflow and network medicine approaches we reanalysed four coronavirus-related expression datasets and performed co-expression analysis focused on thrombosis and ACE2 related genes. We identified microRNAs (miRNAs) which play role in ACE2-related thrombosis in coronavirus infection and further, we validated the expressions of precisely selected miRNAs-related to thrombosis (miR-16-5p, miR-27a-3p, let-7b-5p and miR-155-5p) in 79 hospitalized COVID-19 patients and 32 healthy volunteers by qRT-PCR. Consequently, we aimed to unravel whether bioinformatic prioritization could guide selection of miRNAs with a potential of diagnostic and prognostic biomarkers associated with disease severity in patients hospitalized for COVID-19. In bioinformatic analysis, we identified EGFR, HSP90AA1, APP, TP53, PTEN, UBC, FN1, ELAVL1 and CALM1 as regulatory genes which could play a pivotal role in COVID-19 related thrombosis. We also found miR-16-5p, miR-27a-3p, let-7b-5p and miR-155-5p as regulators in the coagulation and thrombosis process. In silico predictions were further confirmed in patients hospitalized for COVID-19. The expression levels of miR-16-5p and let-7b in COVID-19 patients were lower at baseline, 7-days and 21-day after admission compared to the healthy controls (p < 0.0001 for all time points for both miRNAs). The expression levels of miR-27a-3p and miR-155-5p in COVID-19 patients were higher at day 21 compared to the healthy controls (p = 0.007 and p < 0.001, respectively). A low baseline miR-16-5p expression presents predictive utility in assessment of the hospital length of stay or death in follow-up as a composite endpoint (AUC:0.810, 95% CI, 0.71-0.91, p < 0.0001) and low baseline expression of miR-16-5p and diabetes mellitus are independent predictors of increased length of stay or death according to a multivariate analysis (OR: 9.417; 95% CI, 2.647-33.506; p = 0.0005 and OR: 6.257; 95% CI, 1.049-37.316; p = 0.044, respectively). This study enabled us to better characterize changes in gene expression and signalling pathways related to hypercoagulable and thrombotic conditions in COVID-19. In this study we identified and validated miRNAs which could serve as novel, thrombosis-related predictive biomarkers of the COVID-19 complications, and can be used for early stratification of patients and prediction of severity of infection development in an individual.Abbreviations: ACE2, angiotensin-converting enzyme 2AF, atrial fibrillationAPP, Amyloid Beta Precursor ProteinaPTT, activated partial thromboplastin timeAUC, Area under the curveAß, amyloid betaBMI, body mass indexCAD, coronary artery diseaseCALM1, Calmodulin 1 geneCaM, calmodulinCCND1, Cyclin D1CI, confidence intervalCOPD, chronic obstructive pulmonary diseaseCOVID-19, Coronavirus disease 2019CRP, C-reactive proteinCV, CardiovascularCVDs, cardiovascular diseasesDE, differentially expressedDM, diabetes mellitusEGFR, Epithelial growth factor receptorELAVL1, ELAV Like RNA Binding Protein 1FLNA, Filamin AFN1, Fibronectin 1GEO, Gene Expression OmnibushiPSC-CMs, Human induced pluripotent stem cell-derived cardiomyocytesHSP90AA1, Heat Shock Protein 90 Alpha Family Class A Member 1Hsp90α, heat shock protein 90αICU, intensive care unitIL, interleukinIQR, interquartile rangelncRNAs, long non-coding RNAsMI, myocardial infarctionMiRNA, MiR, microRNAmRNA, messenger RNAncRNA, non-coding RNANERI, network-medicine based integrative approachNF-kB, nuclear factor kappa-light-chain-enhancer of activated B cellsNPV, negative predictive valueNXF, nuclear export factorPBMCs, Peripheral blood mononuclear cellsPCT, procalcitoninPPI, Protein-protein interactionsPPV, positive predictive valuePTEN, phosphatase and tensin homologqPCR, quantitative polymerase chain reactionROC, receiver operating characteristicSARS-CoV-2, severe acute respiratory syndrome coronavirus 2SD, standard deviationTLR4, Toll-like receptor 4TM, thrombomodulinTP53, Tumour protein P53UBC, Ubiquitin CWBC, white blood cells.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , MicroRNAs , Thrombosis , Amyloid beta-Peptides , Angiotensin-Converting Enzyme 2 , Biomarkers , COVID-19/genetics , Heat-Shock Proteins , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2/genetics , Severity of Illness Index , Thrombosis/genetics
15.
HPB (Oxford) ; 24(9): 1453-1463, 2022 09.
Article in English | MEDLINE | ID: mdl-35293321

ABSTRACT

BACKGROUND: Experimental evidence suggests sex dependent differences in liver regeneration. Limited evidence is available examining sex differences in post-hepatectomy liver failure (PHLF) and postoperative outcomes. Our aim was to assess the influence of sex on the outcomes after liver resection. METHODS: The hepatectomy targeted National Surgical Quality Improvement Program (NSQIP) database was assessed for associations between sex and outcomes. RESULTS: A total of 13,401 patients underwent elective hepatic resection between 2014-2017. PHLF was highest among male patients with hepatocellular carcinoma (HCC) (OR = 2.81,95%CI:1.40-5.62). Male sex was independently associated with increased PHLF (OR = 1.47,95%CI:1.15-1.88), major complications (OR = 1.25,95%CI:1.08-1.45), mortality (OR = 1.61,95%CI:1.03-2.50), and if only major resections were assessed (OR = 1.38,95%CI:1.03-1.84). Diagnosis specific subgroup analyses revealed that effects of sex were predominantly HCC associated. CONCLUSIONS: This is the largest series investigating the effects of gender on outcomes after hepatic resection. We documented that women undergoing liver resection have significantly lower risk of PHLF. This difference seemed influenced by the striking increase of PHLF in male HCC patients. These hypothesis suggest that sex might play a role in preoperative risk stratification.


Subject(s)
Carcinoma, Hepatocellular , Liver Failure , Liver Neoplasms , Female , Hepatectomy/adverse effects , Humans , Male , Morbidity , Postoperative Complications/etiology , Retrospective Studies , Sex Characteristics
16.
Int J Mol Sci ; 22(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803718

ABSTRACT

Platelets are tightly connected with the liver, as both their production and their clearance are mediated by the liver. Platelets, in return, participate in a variety of liver diseases, ranging from non-alcoholic fatty liver diseases, (viral) hepatitis, liver fibrosis and hepatocellular carcinoma to liver regeneration. Due to their versatile functions, which include (1) regulation of hemostasis, (2) fine-tuning of immune responses and (3) release of growth factors and cellular mediators, platelets quickly adapt to environmental changes and modulate disease development, leading to different layers of complexity. Depending on the (patho)physiological context, platelets exert both beneficial and detrimental functions. Understanding the precise mechanisms through which platelet function is regulated at different stages of liver diseases and how platelets interact with various resident and non-resident liver cells helps to draw a clear picture of platelet-related therapeutic interventions. Therefore, this review summarizes the current knowledge on platelets in acute and chronic liver diseases and aims to shed light on how the smallest cells in the circulatory system account for changes in the (patho)physiology of the second largest organ in the human body.


Subject(s)
Blood Platelets/pathology , Liver Diseases/pathology , Humans , Liver/pathology , Liver Regeneration
17.
Hepatology ; 69(6): 2636-2651, 2019 06.
Article in English | MEDLINE | ID: mdl-30779441

ABSTRACT

There is an urgent need for an easily assessable preoperative test to predict postoperative liver function recovery and thereby determine the optimal time point of liver resection, specifically as current markers are often expensive, time consuming, and invasive. Emerging evidence suggests that microRNA (miRNA) signatures represent potent diagnostic, prognostic, and treatment-response biomarkers for several diseases. Using next-generation sequencing as an unbiased systematic approach, 554 miRNAs were detected in preoperative plasma of 21 patients suffering from postoperative liver dysfunction (LD) after liver resection and 27 matched controls. Subsequently, we identified a miRNA signature-consisting of miRNAs 151a-5p, 192-5p, and 122-5p-that highly correlated with patients developing postoperative LD after liver resection. The predictive potential for postoperative LD was subsequently confirmed using real-time PCR in an independent validation cohort of 98 patients. Ultimately, a regression model of the two miRNA ratios 151a-5p to 192-5p and 122-5p to 151a-5p was found to reliably predict postoperative LD, severe morbidity, prolonged intensive care unit and hospital stays, and even mortality before an operation with a remarkable accuracy, thereby outperforming established markers of postoperative LD. Ultimately, we documented that miRNA ratios closely followed liver function recovery after partial hepatectomy. Conclusion: Our data demonstrate the clinical utility of an miRNA-based biomarker to support the selection of patients undergoing partial hepatectomy. The dynamical changes during liver function recovery indicate a possible role in individualized patient treatment. Thereby, our data might help to tailor surgical strategies to the specific risk profile of patients.


Subject(s)
Hepatectomy/adverse effects , Liver Diseases/blood , Liver Neoplasms/surgery , MicroRNAs/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Case-Control Studies , Cohort Studies , Female , Hepatectomy/methods , Humans , Liver Diseases/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Middle Aged , Postoperative Complications/blood , Postoperative Complications/pathology , Predictive Value of Tests , Prognosis , Regression Analysis , Retrospective Studies , Risk Assessment , Treatment Outcome
18.
Haematologica ; 105(6): 1738-1749, 2020 06.
Article in English | MEDLINE | ID: mdl-31537686

ABSTRACT

Genetically modified mice have advanced our knowledge on platelets in hemostasis and beyond tremendously. However, mouse models harbor certain limitations, including availability of platelet specific transgenic strains, and off-target effects on other cell types. Transfusion of genetically modified platelets into thrombocytopenic mice circumvents these problems. Additionally, ex vivo treatment of platelets prior to transfusion eliminates putative side effects on other cell types. Thrombocytopenia is commonly induced by administration of anti-platelet antibodies, which opsonize platelets to cause rapid clearance. However, antibodies do not differentiate between endogenous or exogenous platelets, impeding transfusion efficacy. In contrast, genetic depletion with the inducible diphtheria toxin receptor (iDTR) system induces thrombocytopenia via megakaryocyte ablation without direct effects on circulating platelets. We compared the iDTR system with antibody-based depletion methods regarding their utility in platelet transfusion experiments, outlining advantages and disadvantages of both approaches. Antibodies led to thrombocytopenia within two hours and allowed the dose-dependent adjustment of the platelet count. The iDTR model caused complete thrombocytopenia within four days, which could be sustained for up to 11 days. Neither platelet depletion approach caused platelet activation. Only the iDTR model allowed efficient platelet transfusion by keeping endogenous platelet levels low and maintaining exogenous platelet levels over longer time periods, thus providing clear advantages over antibody-based methods. Transfused platelets were fully functional in vivo, and our model allowed examination of transgenic platelets. Using donor platelets from already available genetically modified mice or ex vivo treated platelets, may decrease the necessity of platelet-specific mouse strains, diminishing off-target effects and thereby reducing animal numbers.


Subject(s)
Platelet Count , Platelet Transfusion , Thrombocytopenia , Animals , Blood Platelets , Hemostasis , Mice , Thrombocytopenia/genetics , Thrombocytopenia/therapy
19.
Clin Oral Investig ; 24(5): 1853-1859, 2020 May.
Article in English | MEDLINE | ID: mdl-31468260

ABSTRACT

OBJECTIVES: Periodontitis is associated with systemic inflammation, elevated platelet activation and enhanced risk for cardiovascular diseases, while periodontal treatment reduces tissue inflammation and shows desirable effects on the oral biofilm and dental health. However, subgingival debridement during conservative treatment can lead to local trauma and transient bacteraemia, which might affect cardiovascular risk in these patients. Therefore, we investigated the effect of periodontal treatment on systemic platelet activation. MATERIALS AND METHODS: In a prospective therapeutic trial, 26 patients underwent periodontal treatment and patient blood was analysed immediately before and immediately after intervention for platelet activation markers (flow cytometric analysis of P-selectin, CD63 and CD40L surface expression, integrin αIIbß3 activation and fibrinogen binding, intra-platelet reactive oxygen species production, platelet-leukocyte aggregate formation and intra-platelet vasodilator-stimulated phosphoprotein phosphorylation) in response to adenosine diphosphate (ADP). RESULTS: The present study shows that basal platelet activation levels remain largely unaltered in response to periodontal treatment. We also did not observe significant changes in platelet reactivity in response to different concentrations of platelet agonist ADP. CONCLUSION: Subgingival debridement does not result in relevantly elevated platelet activation. Thus, augmented platelet activation seems unlikely to be a causative triggering factor that increases the short-term risk for platelet-mediated thrombotic events in response to subgingival debridement. CLINICAL RELEVANCE: Subgingival debridement is a safe procedure and does not increase the short-term risk for platelet-mediated thrombotic events.


Subject(s)
Periodontal Debridement , Periodontics , Periodontitis/prevention & control , Platelet Activation , Blood Platelets , Dental Care , Humans , Prospective Studies
20.
Blood ; 139(1): 8-9, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34989772

Subject(s)
Blood Platelets
SELECTION OF CITATIONS
SEARCH DETAIL