Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Prosthet Dent ; 119(2): 292-298, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28552288

ABSTRACT

STATEMENT OF PROBLEM: Acrylic resin denture base resins are colonized by oral and nonoral bacteria and Candida species. This reservoir of microorganism causes denture stomatitis, which can be implicated in some life-threating infections in older denture wearers. PURPOSE: The purpose of this in vitro study was to incorporate quaternized N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer into a denture base resin and investigate its antimicrobial and mechanical properties. MATERIAL AND METHODS: Quaternized ammonium monomer (QAM) was synthesized through the reaction of octyl bromide and DMAEMA. The synthesized QAM was incorporated into a denture base resin system (8 to 12 wt%). The resulting material was characterized by Fourier transform infrared spectroscopy. The in vitro antimicrobial property was determined by direct contact test against Escherichia coli, Staphylococcus aureus, and Candida albicans. Release of the QAM was also tested by means of an agar diffusion test. Mechanical properties were measured with a 3-point bend test, and results were analyzed and compared using ANOVA and the Tukey post hoc test (α=.05). RESULTS: Spectroscopy confirmed the formation of quaternized ammonium modified denture base (QAMDB). The decrease in number of viable cells of E coli, S aureus, and C albicans was more than 99% for 12%-QAMDB in comparison with that of the control groups. An overall decline was observed in the flexural strength and flexural modulus of the fabricated resins (P<.05), but no differences were observed for strain at break or fracture work of the specimens (P>.05). CONCLUSIONS: Denture base resins containing immobilized QAM provided high antibacterial activity, but the flexural strength and flexural modulus of the denture base resins decreased.


Subject(s)
Anti-Infective Agents/therapeutic use , Denture Bases , Acrylic Resins/therapeutic use , Denture Bases/adverse effects , Denture Bases/microbiology , Denture Design/methods , Humans , In Vitro Techniques , Methacrylates/therapeutic use
2.
J Microencapsul ; 34(3): 270-279, 2017 May.
Article in English | MEDLINE | ID: mdl-28420311

ABSTRACT

Carboxymethyl chitosan (CMCh), as a non-toxic, biocompatible and biodegradable semi-synthetic biopolymer with mucoadhesive properties, is widely investigated for targeting drug or gene delivery applications. Here, fabrication of CMCh nanoparticles will be reported using a reverse (w/o) micellar system to provide particles with tuneable mean sizes. Reverse microemulsions were prepared by dispersing aqueous solution of CMCh in n-hexane using sodium-bis(ethylhexyl)-sulfosuccinate (AOT) and glutaraldehyde (GA) as an emulsifier and a crosslinking agent, respectively. The obtained particles were perfectly spherical in the nanometric size range (40-140 nm) with a narrow size distribution according to the FE-SEM images. To determine the effective parameters on the mean nanosphere size, CMCh, AOT and GA concentrations were varied according to a full-factorial, three-level design-of-experiments. After evaluating the results, it was found that AOT and CMCh concentrations had a significant effect on the mean nanosphere size while GA concentration surprisingly showed non-significant, minor effects on the same response.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Micelles , Nanoparticles/chemistry , Cross-Linking Reagents/chemistry , Dioctyl Sulfosuccinic Acid/chemistry , Emulsifying Agents/chemistry , Glutaral/chemistry , Hexanes , Particle Size
3.
Eur J Orthod ; 39(1): 43-51, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26969421

ABSTRACT

OBJECTIVES: The aim of this 'split-mouth design' trial was to evaluate the effect of the nano amorphous calcium phosphate (NACP) containing composite on enamel mineral contents and streptococcus mutans population in fixed orthodontic patients. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTION: Randomized, prospective, single-center controlled trial. Twenty-four patients between the ages of 13-18 years participated in this study. The control and test sides were randomly selected by a coin toss (1:1 ratio). On the control side orthodontic brackets were bonded on the buccal surfaces of upper premolars and laterals using an orthodontic composite (Transbond XT), and on the study side NACP-containing composite was used. Outcome measures were the mineral content around the brackets and S.mutans count. The later were calculated in the plaque around the brackets by real-time PCR at 3 months, and 6 months after the initiation of treatment. All stages of the study were blind using coding system. Paired t-test and repeated measurements were used for data analysis. RESULTS: In the third and sixth month, the bacterial population was significantly lower in the study side than the control side (P = 0.01 and 0.000).The mineral content of the study side was significantly higher than the controls, 6 months after brocket bonding (P = 0.004). There were no significant differences between the premolars and lateral teeth for all measurements. LIMITATIONS: This research was performed in a single-center by one experienced clinician. CONCLUSION: NACP-containing composites have the potential to inhibit mineral content loss and S.mutans colonization around orthodontic brackets during fixed orthodontic treatments. TRIAL REGISTRATION: This trial was not registered. PROTOCOL: The protocol was not published before trial commencement.


Subject(s)
Bicuspid/chemistry , Calcium Phosphates/chemistry , Dental Enamel/chemistry , Dental Plaque/microbiology , Orthodontic Brackets/standards , Resin Cements/chemistry , Streptococcus mutans/chemistry , Adolescent , Female , Humans , Male , Mouth , Prospective Studies , Real-Time Polymerase Chain Reaction
4.
J Mater Sci Mater Med ; 25(1): 23-35, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24030697

ABSTRACT

This research explores the correlation between the structural properties of supramolecular biocomposites and their mechanical strength. Hybrid biocomposites composed of surface-modified hydroxyapatite nano-particles and supramolecular polycaprolactone (SP PCL), were prepared at different compositions, and their mechanical, thermal and viscoelastic properties as well as biodegradability, biocompatibility and cytotoxicity were evaluated in vitro. The results were compared with those for SP PCL/naked hydroxyapatite nano-composites. We show that surface modification of hydroxyapatite nanoparticles resulted in outstanding improvement of tensile strength and modulus up to 3.6 and 2.2-fold, respectively. At above 10 wt% HAp and 20 wt% HApUPy, heterogeneous nano-composites with inferior mechanical properties were obtained. Based on rheological (in steady shear mode) and small/wide angle X-ray scattering measurements, unusual improved mechanical properties were ascribed to the formation of supramolecular clusters around nanoparticles. In-vitro degradation of the supramolecular nano-composites was also studied to investigate the overall product biodegradation as well as toxicity of the degradation product(s).


Subject(s)
Durapatite/chemistry , Nanocomposites/chemistry , Polyesters/chemistry , Absorbable Implants , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/toxicity , Biomechanical Phenomena , Cell Survival/drug effects , Colloids , Drug Stability , Durapatite/metabolism , Durapatite/toxicity , Elastic Modulus , Materials Testing , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanocomposites/toxicity , Polyesters/metabolism , Polyesters/toxicity , Rats , Rheology , Tensile Strength
5.
J Colloid Interface Sci ; 659: 751-766, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211492

ABSTRACT

In this research, new injectable and in situ photocurable elastomeric nanohybrids have been fabricated from polyalphaolefin (PAO) resins and halloysite nanofiller. In this regard, the co-oligomerization of long α-olefin monomers (C6, C8 and C10) with alkenol counterparts was carried out via a simple cationic route to provide OH-functionalized PAOs. The newly formed PAO type copolymer resins as well as halloysite nanoclay were then equipped with photocurable CC bonds containing an acrylate moiety. After the characterization of the final chemical substances and also of the intermediate structures, experimentally and computationally by means of Density Functional Theory (DFT) calculations, the neat treated PAO and PAO/halloysite nanohybrids were subjected to a curing process by visible light irradiation (λ âˆ¼ 475 nm, blue light). The crosslinking efficiency of the neat resins and the formed nanohybrid was evaluated using shrinkage strain-time curves and equilibrium swelling method. The suggested nanohybrid is not only biocompatible (96 % in the MTT assay), and hydrophilic (with a water contact angle of 61°), but also exhibits an easy, fast and robust curing process with great potential for coating and sealing technologies for medical devices.

6.
J Mech Behav Biomed Mater ; 139: 105693, 2023 03.
Article in English | MEDLINE | ID: mdl-36731189

ABSTRACT

Considering the poor hydrolytic stability of the most methacrylate-based functional monomers of self-etch dental adhesives in acidic and aqueous conditions, in this study allyl-based photo-polymerizable self-etch monomers was synthesized in order to improve the hydrolytic stability. The new self-etch monomers based on phosphonic acid functional groups were synthesized through a two-step procedure. First, phosphoric anhydride, poly-phosphoric acid, and polyethylene glycol were reacted to produce phosphate ester precursor (P-PEG-P). Next, allyl 2, 3-epoxypropyl ether was reacted with P-PEG-P to synthesize allyl self-etch monomer. Glycidyl methacrylate was also reacted with P-PEG-P to synthesize a methacrylate self-etch analogue monomer. The monomers were characterized using FTIR and 1H-NMR spectroscopy. The viscosities of monomers were measured using a rheometer. The degree photopolymerization conversion of monomers was measured using FTIR spectroscopy. The pH assay was performed by a digital pH-meter. The etching behavior of the monomers on human teeth was studied using scanning electron microscopy (SEM). Thermo-gravimetric analysis (TGA) was performed to evaluate the possible interaction of the monomers with tricalcium phosphate (TCP). The solubility of synthesized monomers was examined in ethanol, acetone, and water. The hydrolytic stability of cured resins in artificial saliva during 4 months was also surveyed. The synthesis of new self-etching monomers was successfully confirmed by spectroscopy analyses. The results represented appropriate viscosity of self-etching monomers around 1 (Pa s). The resin containing methacrylate monomer exhibited its degree of conversion is more than that of allyl monomer (p < 0.05). The allyl and methacrylate self-etch monomers exhibited pH values of 1.2 and 1.3, respectively. SEM micrograph verified that the synthesized monomers were able to suitable etching of the enamel human premolar teeth. The data obtained from TGA tests revealed that thermal stability of (TCP) containing monomers is enhanced. Also, the monomers exhibited an excellent solubility in polar solvents, but when they are mixed with TCP, they are not, anymore, dissolved in these solvents. Furthermore, the allyl monomer showed higher hydrolytic stability than the methacrylate monomer. The new photo-polymerizable acidic monomer based on allyl functionality showed enhanced hydrolytic stability compared to methacrylate-based monomer. It may be considered as a promising monomer for self-etch dental adhesives.


Subject(s)
Adhesives , Dental Bonding , Humans , Polymerization , Methacrylates/chemistry , Solvents , Water , Dental Cements , Materials Testing , Resin Cements/chemistry , Dentin-Bonding Agents/chemistry
7.
Dent Res J (Isfahan) ; 20: 95, 2023.
Article in English | MEDLINE | ID: mdl-37810451

ABSTRACT

Background: In general, bioactive glasses (BAGs) can react with tissue minerals and promote remineralization. However, the application of BAG in bonding agents and its impact on bond strength remain uncertain due to insufficient information and limited research in this area. Materials and Methods: This study employed a randomized controlled design to assess the effects of composite-bonding agents with varying BAG contents on shear bond strength and fracture pattern in sound and demineralized teeth, with and without thermocycling. Thus, 80 healthy third molars were randomly divided into two groups: sound teeth and demineralized teeth. Five bonding agents were applied to the prepared dentin surfaces, including four experimental composite-bonding agents with varying BAG content (0, 0.2, 0.5, and 2 wt%) and the Adper Single Bond commercial bonding as control. The shear bond strength of all samples was measured using a universal tester. The type of failure of each specimen was determined using a stereomicroscope. Kruskal-Wallis nonparametric test was performed on the obtained shear bond strength data followed by Mann-Whitney post hoc test with Bonferroni correction to determine statistical significance. The level of significance was considered P ≤ 0.05 for all tests and was adjusted by Bonferroni correction. Results: Demineralization significantly decreased shear bond strength in the teeth samples. Adper Single Bond exhibited the highest shear bond strength values. The addition of BAG did not have a significant influence on shear bond strength, regardless of demineralization or thermocycling condition. Adhesive failure was the predominant type of failure in all groups. Conclusion: The incorporation of BAG filler up to 2 wt% did not result in significant changes in shear bond strength. Experimental adhesive bonding agents with 2 wt% BAG content demonstrated shear bond strengths comparable to the commercial bonding agent in sound nontreated, sound thermocycled, demineralized nontreated, and demineralized thermocycled groups.

8.
J Can Dent Assoc ; 78: c53, 2012.
Article in English | MEDLINE | ID: mdl-22673217

ABSTRACT

OBJECTIVE: To evaluate the degree of conversion of dual-cured resin cements applied for luting of translucent and opaque fibre posts. METHODS: Two dual-cured resin cements, RelyX ARC and Nexus 2, were used to cement 2 types of tooth-coloured fibre posts, D.T. Light-Post (translucent) and D.T. White-Post (opaque). The degree of conversion for each resin cement was measured. Post-curing polymerization and chemical curing of the cements were also measured. The degree of conversion was measured at various distances (4, 6 and 8 mm) from the tip of the light-curing unit by Fourier transform infrared spectroscopy. The data were analyzed with analysis of variance and post hoc tests (α = 0.05). RESULTS: The degree of conversion of the dual-cure cements was significantly higher with the D.T. Light-Posts than with the D.T. White-Posts (p < 0.05). No significant difference was observed in the degree of conversion at different depths for the RelyX ARC resin cement in conjunction with the D.T. Light-Posts (p > 0.05). The overall degree of conversion decreased linearly with increasing distance from the light-curing tip. Monitoring of post-curing polymerization and chemical curing revealed no further increase in degree of conversion after 5 minutes (p > 0.05). CONCLUSION: The translucent fibre posts (D.T. Light-Posts) allowed a significantly higher degree of conversion with dual-cure resin cements than the opaque fibre posts (D.T. White-Posts) because of the light-transmitting property of their optical fibres.


Subject(s)
Bisphenol A-Glycidyl Methacrylate/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Post and Core Technique , Resin Cements/chemistry , Root Canal Therapy/instrumentation , Spectroscopy, Fourier Transform Infrared , Analysis of Variance , Hardness , Humans , Light-Curing of Dental Adhesives , Polymerization , Self-Curing of Dental Resins
9.
J Mech Behav Biomed Mater ; 126: 105020, 2022 02.
Article in English | MEDLINE | ID: mdl-34883457

ABSTRACT

OBJECTIVE: To synthesize a series of poly (acrylic acid-co-itaconic acid) (P(AA-co-IA)) copolymers with different molecular weights (MWs) through a facile water-based solution photopolymerization and to investigate the operational and mechanical properties of the experimental glass-ionomer (GI) cements made of the ionomers. METHODS: Thioglycolic acid (TGA) was used as a chain transfer agent to synthesize P(AA-co-IA) ionomers with different MWs through the solution photopolymerization. The chemical structure, MWs, and rheological properties of the copolymers were fully characterized. The GI cements were prepared using the ionomer solutions in different MWs and concentrations. Finally, the operating and mechanical properties of the experimental GI cements were investigated and compared with those of a commercially available GI cement. RESULTS: The synthesis and composition of the P(AA-co-IA) were approved by spectroscopy analyses. The results revealed that by increasing the TGA content, MW and polydispersity index (PDI) of the synthesized copolymers demonstrate a decreasing trend from 4.5 × 104 g/mol (PDI of 2.45) to 7.4 × 103 g/mol (PDI of 1.62). Accordingly, the viscosity of copolymers decreased with increasing the TGA concentration in the polymerization recipes. Setting times of the cements increased with reducing the MWs and ionomer concentration. The compressive and flexural strengths of GI cements were improved by increasing the MWs, ionomers concentration, and storage time. SIGNIFICANCE: The solution photopolymerization provides a facile and environmentally safe method to synthesize P(AA-co-IA) copolymers with controlled MWs. The structure-property relationships presented in the study also provide valuable information in the production and improvement of the GI cements.


Subject(s)
Glass Ionomer Cements , Acrylates , Compressive Strength , Materials Testing , Polymerization , Succinates
10.
Lasers Med Sci ; 26(5): 553-61, 2011 Sep.
Article in English | MEDLINE | ID: mdl-19618232

ABSTRACT

The aim of this study was to investigate the effect of power density and irradiation time of an argon laser on the physico-mechanical properties of light-cured dental nanocomposites. The composites were cured with 260 mW/cm(2) and 340 mW/cm(2) power densities at different irradiation times. The degree of conversion (DC), flexural strength, flexural modulus, water sorption, solubility and reaction temperature were measured. The maximum DC (50%), which was achieved after approximately 20 s irradiation, and the reaction temperature rise (20°C) were demonstrated by composite containing 20% filler cured at 340 mW/cm(2). The composite with 25% filler cured at 340 mW/cm(2) showed the highest flexural strength and modulus, which were 32.2 MPa and 1.89 GPa, respectively. The minimum water sorption (3.8%) and solubility (1.2%) were achieved with the composite containing 25% filler cured at 340 mW/cm(2). Finally, the composite with 25% filler cured at 340 mW/cm(2) showed higher physico-mechanical properties.


Subject(s)
Curing Lights, Dental , Dental Materials , Lasers, Gas , Nanocomposites , Composite Resins/chemistry , Composite Resins/radiation effects , Dental Materials/chemistry , Dental Materials/radiation effects , Dental Restoration, Permanent , Elastic Modulus , Humans , Materials Testing , Nanocomposites/chemistry , Nanocomposites/radiation effects , Photochemical Processes , Solubility , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature
11.
J Mech Behav Biomed Mater ; 119: 104498, 2021 07.
Article in English | MEDLINE | ID: mdl-33839538

ABSTRACT

OBJECTIVE: In this study, we incorporated hybrid nanoparticles (poly (acrylic acid)-grafted nanoclay/nanosilica, respectively, with platelet and spherical morphologies, abbreviated as PAA-g-NC-Sil) in different concentrations (0, 0.2, 0.5, 1, 2 and 5 wt%) to an experimental dentin bonding system and investigated the physical properties of the filled adhesive and its shear bond strength (µ-SBS) to dentin. We subsequently compared the properties of the adhesives containing PAA-g-NC-Sil with previously studied adhesives containing poly (methacrylic acid)-g-nanoclay (PMA-g-NC) (Solhi et al., 2012a), poly (acrylic acid)-g-nanoclay (PAA-g-NC) (Solhi et al., 2012b), and the hybrid poly (methacrylic acid)-grafted-nanoclay-nanosilica (PMA-g-NC-Sil) (Solhi et al., 2020). MATERIALS AND METHODS: In a set of previous publications and the present paper, we grafted poly (acrylic acid) (PAA) or poly (methacrylic acid) (PMA) onto the surface of pristine Na-MMT nanoclay (Cloisite® Na+) through free radical polymerization of monomer in an aqueous media in the presence or absence of nanosilica particles. We characterized the resulting modified nanoparticles (PMA-g-NC, PAA-g-NC, PMA-g-NC-Sil and PAA-g-NC-Sil) using GPC, FTIR, TGA, and XRD. We then incorporated the modified particles as functionalized fillers to experimental dentin adhesives in different concentrations and studied the stability of modified fillers dispersion by separation analysis. We also studied the properties of the photo-cured adhesive matrices using FTIR, TEM, SEM, EDXA, and XRD. We examined the shear bond strength of the adhesives (containing different contents of each modified filler, separately) to human premolar teeth. The results were analysed and compared statistically. RESULTS: The results confirmed that the polymers have been grafted onto the surface of nanoclay. An exfoliated structure for the nanoclay platelets in the photo-cured adhesive containing PAA-g-NC-Sil was observed. Addition of 0.5 wt% of PAA-g-NC-Sil to the experimental adhesive increased the shear bond strength and the dispersion stability in comparison to unfilled adhesive. The same trend was also observed for adhesives containing PMA-g-NC, PAA-g-NC, and PMA-g-NC-Sil. The adhesive containing PAA-g-NC-Sil showed the best dispersion stability and subsequently the highest shear bond strength in the optimal concentration among adhesives containing the four available fillers (PMA-g-NC, PAA-g-NC, PMA-g-NC-Sil and PAA-g-NC-Sil). SIGNIFICANCE: Addition of poly (acrylic acid) modified nanoparticles to the experimental dentin adhesives resulted in higher shear bond strength due to the potential interactions between the carboxylic acid functional groups on the surface of the modified particles and the dentin structure. Between the poly (acrylic acid) and poly (methacrylic acid), the former acid with higher PKa performed better. Addition of the spherical nanosilica particles to the adhesives containing platelet nanoclay helped to better exfoliate the platelets resulting in improved µ-SBS and dispersion stability.


Subject(s)
Dental Bonding , Nanoparticles , Adhesives , Dental Cements , Dentin , Dentin-Bonding Agents , Humans , Materials Testing , Polymerization , Resin Cements , Shear Strength
12.
Dent Mater ; 37(8): 1283-1294, 2021 08.
Article in English | MEDLINE | ID: mdl-34023144

ABSTRACT

OBJECTIVE: To synthesize an amine-modified polyhedral oligomeric silsesquioxane (POSS) nano-structure as a novel co-initiator-crosslinker (co-Ini-Linker) and to determine the effect of the co-Ini-linker on the physical and mechanical behavior of an experimental dental composite. METHODS: The amine-methacrylate POSS nano-structures (AMA-POSS) were chemically synthesized by anchoring a tertiary amine functionality on the methacrylate POSS (MA-POSS) branches. Three types of AMA-POSS, having different amine branches in their structures, were synthesized through the Aza Michael reaction. The chemical structure of AMA-POSSs were evaluated by1H-NMR spectroscopy. Afterward, the AMA-POSS was incorporated into a dental resin system composed of Bis-GMA, TEGDMA, and photo-initiator. Three resin systems with different AMA-POSS types were then prepared, and their properties were compared with a resin containing DMAEMA as a conventional co-initiator. The degree of conversion evaluated by FTIR spectroscopy and the shrinkage kinetics of the resins were determined through the bonded-disk technique. The flexural properties of the photopolymerized resins were also investigated. The distribution of nano-structures in the matrix resin was analyzed using EDX analysis. RESULTS: The modified POSS structure and the number of amine branches were confirmed with1H-NMR spectroscopy. The resin containing 8 amine branches (P8) showed the same degree of conversion (DC%) as the resin containing DMAEMA (P > 0.05). Decreasing the amine branches in the POSS structure, however, revealed an increasing trend in DC%. The resin containing P8 showed the lowest shrinkage strain. By incorporating AMA-POSS into the resin system, the water sorption significantly decreased (P < 0.05). The flexural strength and modulus increased by adding P3 into the resin system (P < 0.05). EDX Si-map revealed that the co-Ini-linker was well dispersed in the resin matrix. SIGNIFICANCE: The synthesized novel amine-methacrylate POSS nanostructures not only act as an amine co-initiator but also work as a reinforcing filler and a cross-linking agent.


Subject(s)
Composite Resins , Methacrylates , Bisphenol A-Glycidyl Methacrylate , Materials Testing , Polyethylene Glycols , Polymethacrylic Acids
13.
Materials (Basel) ; 14(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34832236

ABSTRACT

The aim of this study was to assess the effect of application of a recently developed bio-adhesive (Impladhesive) to abutment screw threads on the removal torque value and rotational misfit at the implant-abutment junction. This in vitro study evaluated 20 implant fixtures and 20 straight abutments. Specimens were randomly divided into two groups (n = 10) with/without adhesive application. In the adhesive group, the abutment was dipped in Impladhesive before torquing. In the control group, the abutment was torqued conventionally without adhesive application. The removal torque value was recorded after completion of the cyclic loading of 500,000 cycles with 2 Hz frequency and 75 N load. Rotational misfit was recorded using a video measuring machine. After applying the torque, the change in the bisector angle on the abutment hex was recorded for each implant. The biocompatibility of Impladhesive was evaluated using a MTT cell vitality assay. Normal distribution of data was assessed using the Kolmogorov-Smirnov test. Data were analyzed using a t-test and Pearson's correlation coefficient The application of Impladhesive at the implant-abutment interface resulted in significantly greater mean removal torque value compared to the control group (p = 0.008). In addition, the mean rotational misfit at the implant-abutment interface was significantly lower in the use of Impladhesive compared to the control group (p = 0.001). In addition, the cell vitality was found to be greater than 80% at all evaluated time points. It can be concluded that the application of Impladhesive on the abutment screw significantly decreased rotational misfit and increased the removal torque value. Future studies are needed to evaluate the efficacy of this bio-adhesive an in vivo setting.

14.
Dent Res J (Isfahan) ; 18: 73, 2021.
Article in English | MEDLINE | ID: mdl-34760064

ABSTRACT

BACKGROUND: To improve the limitations, many modifications in the resin-modified glass ionomer (RMGI) composition have been proposed. In this study, we evaluated the effect of different concentrations of zinc oxide (ZnO) nanoparticles incorporated into RMGI cement on its physical and antimicrobial properties. MATERIALS AND METHODS: In this in vitro study, ZnO nanoparticles with 0-4 wt.% concentrations were incorporated into RMGI. The following tests were carried out: (a) Antibacterial activity against Streptococcus mutans tested by disc diffusion method, (b) mechanical behavior assessment by measuring flexural strength (FS) and flexural modulus (FM), (c) micro-shear bond strength (µ-SBS), and (d) fluoride and zinc release. Data were analyzed using the statistical tests of ANOVA, t-test, and Tukey's HSD post hoc in SPSS V22. The level of significancy was 0.05. RESULTS: In the disc diffusion method, specimens with 2 wt.% ZnO nanoparticles showed the highest antimicrobial efficacy (P < 0.05). After 1 month of water storage, no significant difference was observed in FS and FM of the samples (P > 0.05). In 2 wt.% ZnO nanoparticles group, µSBS increased in the first 7 days but decreased by 17% after one month, which showed a significant difference with that of the control group. The fluoride release did no change in the ZnO nanoparticle-containing group compared with the control group at all time intervals. CONCLUSION: Incorporation of 2 wt.% ZnO nanoparticles into the RMGI cement adds antimicrobial activity to the cement without sacrificing FS and fluoride release properties, while decreased µSBS.

15.
J Mech Behav Biomed Mater ; 110: 103926, 2020 10.
Article in English | MEDLINE | ID: mdl-32957221

ABSTRACT

The aim of this study was to synthesize acrylic core-shell particles and silica-loaded core-shell hybrid particles through emulsion polymerization. Also this work examined the influence of synthesized nanoparticles loading in a Bis-GMA/TEGDMA resin matrix on some mechanical properties of the dental composite resins. Core-shell particles consisting of polybutyl acrylate (PBA) rubbery core and polymethyl methacrylate (PMMA)/polystyrene (PS) shell were synthesized by seeded emulsion polymerization. For preparing the core-shell hybrid particles, first silica particles with diameters of about 68 nm were synthesized based on the Stöber process. Then the surface of silica particles was treated with É£-MPS. Afterwards, polymeric shell was coated on silica nanoparticles through emulsion polymerization. The morphology of core-shell particles was examined by SEM/TEM. Mechanical properties (fracture toughness, flexural strength and flexural modulus) of the photo-cured Bis-GMA/TEGDMA dental resins/composites filled with different mass fractions of synthesized nanoparticles were tested, and analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. Formation of glassy shell on PBA core in core-shell particles, grafting of É£ -MPS onto the silica particles and encapsulation of modified silica by polymeric shell in core-shell hybrid particles were confirmed using various analytical techniques. The results of mechanical tests showed that fracture toughness of Bis-GMA/TEGDMA dental resins improved about 35% by the inclusion of 5 wt% silica-loaded core-shell hybrid particles with little effect on flexural strength. This study shows that incorporation of proper amount of hybrid core-shell particles in dental composites can improve their fracture toughness and thus may extend their service life.


Subject(s)
Composite Resins , Nanoparticles , Bisphenol A-Glycidyl Methacrylate , Materials Testing , Methacrylates , Polyethylene Glycols , Polymethacrylic Acids , Silicon Dioxide , Surface Properties
16.
Dent Mater ; 36(6): e169-e183, 2020 06.
Article in English | MEDLINE | ID: mdl-32307121

ABSTRACT

OBJECTIVE: The aim of this study was to synthesize poly(acrylic acid-co-itaconic acid) (PAA-co-PIA) ionomer through a novel precipitation photopolymerization technique. The ionomer was characterized and the effect of its structural parameters, such as molecular weight and copolymer composition were investigated on the mechanical properties of glass-ionomer prepared using the ionomer. METHODS: Design of experiment (DOE) was used to examine the effect of monomer ratio and the amount of chain transfer agent on the molecular weight and final conversion of the ionomers synthesized through the precipitation photopolymerization. The copolymer compositions were identified using FTIR and 1H-NMR spectroscopy. The molecular weights of the copolymers were evaluated by GPC. A series of PAA-co-PIA copolymers were then synthesized via the photopolymerization technique in three monomer ratios and two molecular weight ranges (high and low) to study the properties of the glass ionomers thereof. Experimental dental glass-ionomer cements were prepared by mixing the synthesized polymers with glass powder and their compressive properties were determined according to ISO 9917-1:2007 after storing for 0, 1, 7 and 28 days in distilled water. The scanning electron microscopy (SEM) was used to study the fracture surface morphology of the cements. RESULTS: The PAA-co-PIA polymers were synthesized by the photopolymerization method in a short time and high purity. The DOE showed that by decreasing the acrylic acid/itaconic acid ratio and increasing the amount of transfer agent, the molecular weight and final conversion decreased significantly. By increasing the itaconic acid content in the copolymer composition and increasing the molecular weight in a constant copolymer composition, the compressive strength and modulus were increased. Microstructures revealed that cements made of the higher molecular weight poly acids showed lower cracks and voids. SIGNIFICANCE: The precipitation photopolymerization technique provides a promising and facile method in the synthesis of ionomers which are used in dental cements and other application.


Subject(s)
Glass Ionomer Cements , Succinates , Compressive Strength , Materials Testing
17.
J Mech Behav Biomed Mater ; 109: 103840, 2020 09.
Article in English | MEDLINE | ID: mdl-32543405

ABSTRACT

OBJECTIVE: In this study the mechanical and adhesion properties of an experimental methacrylate based dentin bonding system containing a combination of spherical and layered platelet nanoparticles were investigated. The nanoparticles were first modified through surface graft polymerization of methacrylic acid in order to make the particles surface compatible with the bonding matrix resin. MATERIALS AND METHODS: Graft free radical polymerization in aqueous media was performed to attach Poly (methacrylic acid) (PMA) chains onto the surface of Na-MMT nanoclay (Cloisite® Na+) and silica nanoparticles (Aerosil® 200). The hybrid PMA grafted nanoparticles (PMA-g-NC-Sil) were characterized using GPC, FTIR, TGA, and X-ray diffraction (XRD). Dentin adhesives containing different amounts of the hybrid modified nanoparticles were photopolymerized and their characteristics were studied using FTIR, TEM, SEM, EDXA, and XRD techniques. The adhesives containing different amounts of PMA-g-NC-Sil were applied to the conditioned human premolar dentin to bond a dental composite to the teeth. The bond strength was then measured by microshear bond strength testing method. The results were analyzed and compared statistically. The stability of PMA-g-NC-Sil dispersion in the dentin adhesive was investigated using separation analysis (LUMi Reader) techniques. RESULTS: The grafting of PMA chains onto the surface of nanoclay was confirmed by FTIR and TGA analytical techniques. The intercalated-exfoliated structure for the nanoclay platelets in the photo-cured adhesive was observed using XRD and TEM. The surface modification of the nanoparticles significantly increased the dispersion stability of the fillers in the adhesive solution. The microshear test results indicated that the incorporation of the PMA-g-NC-Sil nanoparticles significantly enhanced the bond strength to dentin with the highest shear bond strength observed at 0.5 wt%. SIGNIFICANCE: The incorporation of the PMA modified hybrid nanofillers into the dentin adhesive resulted in a dentin bonding agent with enhanced shear bond strength through reinforcing the adhesive matrix and potential interactions between their carboxylic acid groups and the tooth structure. The dispersion stability of the nanoparticles was also dramatically improved by the surface modification of the nanoparticles.


Subject(s)
Dental Bonding , Nanoparticles , Blood Platelets , Composite Resins , Dentin , Dentin-Bonding Agents , Humans , Materials Testing , Methacrylates , Resin Cements , Shear Strength
18.
J Mech Behav Biomed Mater ; 110: 103904, 2020 10.
Article in English | MEDLINE | ID: mdl-32957210

ABSTRACT

A facile procedure has been devised to develop a novel dentin bonding system containing poly (acrylic acid)-grafted-silanized fumed silica particles as reinforcing filler, with high stability of nanoparticle dispersion and enhanced bond strength and mechanical properties. In the first step, the silanization of fumed silica nanoparticles was performed in the following conditions: (i) ethanol-water solution with a pH of 5 and (ii) cyclohexane with a pH of 9 using trimethoxysilylpropyl methacrylate (γ-MPS) as a reactive silane coupling agent. FTIR and TGA analyses confirmed the presence of silane in the resultant structure and enhanced dispersion stability of modified particles was proved by a separation analyzer and also zeta potential analyses. In the second step, free radical polymerization of acrylic acid monomers in the presence of silanized nanoparticles was carried out and poly (acrylic acid) -grafted- silanized fumed silica were acquired. The flexural strength and fracture toughness of the adhesive containing 0.2 wt.% of the dual modified filler reached maximum of 70.4 MPa and 1.34 MPa m1/2, respectively, showing average improvements of 74% and 179%, respectively, in comparison with the adhesive without filler. Flexural modulus values did not significantly change with increasing the filler content except the adhesive containing 5 wt.% having the lowest flexural modulus. The highest microtensile bond strength was also observed at 0.2 wt.% filler content showing the average improvements of 197% as compared with the neat adhesive. Energy dispersive X-ray (EDX) mapping confirmed a homogenous and uniform distribution of the fillers in the adhesive matrix containing 0.2 wt.% and 0.5 wt.% of filler while incorporation of 5 wt.% led to large particle aggregates. SEM images of the fracture surface of the adhesive with different filler contents subjected to fracture toughness test showed rougher surface and longer crack path by increasing filler concentration. The adhesive containing 0.2 wt.% of filler perfectly penetrated into the dentin tubules proved by the SEM micrographs in microtensile bond strength test.


Subject(s)
Dental Bonding , Methacrylates , Composite Resins , Dental Cements , Materials Testing , Polymerization , Silicon Dioxide , Surface Properties
19.
Polymers (Basel) ; 12(12)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255699

ABSTRACT

Thermally induced phase separation followed by freeze drying has been used to prepare biodegradable and biocompatible scaffolds with interconnected 3D microporous structures from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) copolymers containing 5 and 12 wt % of 3-hydroxyvalerate (HV). Solutions of PHBV in 1,4-dioxane, underwent phase separation by cooling under two different thermal gradients (at -25 °C and -5 °C). The cloud point and crystallization temperature of the polymer solutions were determined by turbidimetry and differential scanning calorimetry, respectively. Parameters affecting the phase separation mechanism such as variation of both the cooling process and the composition of the PHBV copolymer were investigated. Afterwards, the influence of these variables on the morphology of the porous structure and the final mechanical properties (i.e., rigidity and damping) was evaluated via scanning electron microscopy and dynamic mechanical thermal analysis, respectively. While the morphology of the scaffolds was considerably affected by polymer crystallization upon a slow cooling rate, the effect of solvent crystallization was more evident at either high hydroxyvalerate content (i.e., 12 wt % of HV) or high cooling rate. The decrease in the HV content gave rise to scaffolds with greater stiffness because of their higher degree of crystallinity, being also noticeable the greater consistency of the structure attained when the cooling rate was higher. Scaffolds were fully biocompatible supports for cell adhesion and proliferation in 3D cultures and show potential application as a tool for tissue regeneration.

20.
Clin Oral Investig ; 13(3): 309-16, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19085020

ABSTRACT

The aim of the study was to investigate the temperature rise of a nanocomposite and a conventional hybrid dental composite during photopolymerization when cured with halogen curing lamp (QHT) and light-emitting diode (LED). Temperature rise during photopolymerization of two commercially available composites (Filtek Supreme(R) and TetricCeram) were measured using a K-type thermocouple and a digital thermometer. Different curing modes were utilized to cure the composites: a high-intensity QHT unit (Optilux 501) in two different modes (standard and ramp), a low-intensity QHT unit (Coltolux 50), and an LED unit (Ultralume-2). Total temperature rise, polymerization reaction exotherm, and irradiation-induced temperature rise of the composites were determined. Degree of conversion of the specimens was measured using FTIR spectroscopy. The results revealed that the Filtek Supreme nanocomposite showed lower temperature rise and degree of conversion in comparison with the hybrid composite (p < 0.05). It was also found that the LED curing unit induced considerable total and irradiation temperature rise without any improvement in the degree of conversion. Ramp curing mode showed lower temperature rise and delayed gel point and was found to be more effective than QHT standard mode and LED units. Although it is claimed that the LED curing units exhibit lower temperature rise during the photopolymerization, the present study showed that the curing units have no advantage over the conventional QHT units regarding the temperature rise and degree of polymerization conversion.


Subject(s)
Composite Resins , Curing Lights, Dental , Hot Temperature , Light-Curing of Dental Adhesives , Nanocomposites , Dental Restoration, Permanent , Halogens , Hardness , Phase Transition , Semiconductors , Spectroscopy, Fourier Transform Infrared , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL