Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EMBO J ; 32(4): 496-510, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23288040

ABSTRACT

Calmodulin-dependent kinase II (CaMKII) is key for long-term potentiation of synaptic AMPA receptors. Whether CaMKII is involved in activity-dependent plasticity of other ionotropic glutamate receptors is unknown. We show that repeated pairing of pre- and postsynaptic stimulation at hippocampal mossy fibre synapses induces long-term depression of kainate receptor (KAR)-mediated responses, which depends on Ca(2+) influx, activation of CaMKII, and on the GluK5 subunit of KARs. CaMKII phosphorylation of three residues in the C-terminal domain of GluK5 subunit markedly increases lateral mobility of KARs, possibly by decreasing the binding of GluK5 to PSD-95. CaMKII activation also promotes surface expression of KARs at extrasynaptic sites, but concomitantly decreases its synaptic content. Using a molecular replacement strategy, we demonstrate that the direct phosphorylation of GluK5 by CaMKII is necessary for KAR-LTD. We propose that CaMKII-dependent phosphorylation of GluK5 is responsible for synaptic depression by untrapping of KARs from the PSD and increased diffusion away from synaptic sites.


Subject(s)
Calcium Signaling/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mossy Fibers, Hippocampal/metabolism , Receptors, Kainic Acid/metabolism , Synapses/metabolism , Animals , COS Cells , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Chlorocebus aethiops , Disks Large Homolog 4 Protein , Guanylate Kinases/genetics , Guanylate Kinases/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Phosphorylation/physiology , Protein Structure, Tertiary , Protein Transport , Rats , Receptors, Kainic Acid/genetics , Synapses/genetics
2.
Article in English | MEDLINE | ID: mdl-22311618

ABSTRACT

BACKGROUND: The increase in exposure to the Wireless Fidelity (Wi-Fi) wireless communication signal has raised public health concerns especially for young people. Animal studies looking at the effects of early life and prenatal exposure to this source of electromagnetic fields, in the radiofrequency (RF) range, on development and behavior have been considered as high priority research needs by the World Health Organization. METHODS: For the first time, our study assessed the effects of in utero exposure to a 2450 MHz Wi-Fi signal (2 hr/day, 6 days/week for 18 days) on pregnant rats and their pups. Three levels in terms of whole-body specific absorption rate were used: 0.08, 0.4, and 4 W/kg. The prenatal study on fetuses delivered by caesarean (P20) concerned five females/group. The dams and their offspring were observed for 28 days after delivery (15 females/group). RESULTS: For all test conditions, no abnormalities were noted in the pregnant rats and no significant signs of toxicity were observed in the pre- and postnatal development of the pups, even at the highest level of 4 W/kg. CONCLUSIONS: In the present study, no teratogenic effect of repeated exposures to the Wi-Fi wireless communication signal was demonstrated even at the highest level of 4 W/kg. The results from this screening study aimed at investigating Wi-Fi effects, strengthen the previous conclusions that teratology and development studies have not detected any noxious effects of exposures to mobile telephony-related RF fields at exposure levels below standard limits.


Subject(s)
Electromagnetic Fields/adverse effects , Prenatal Exposure Delayed Effects/pathology , Radiation Monitoring/methods , Radio Waves/adverse effects , Animals , Animals, Newborn/growth & development , Female , Pregnancy , Rats , Rats, Wistar , Reproduction , Toxicity Tests , Wireless Technology
3.
Bioelectromagnetics ; 33(5): 410-20, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22228576

ABSTRACT

An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.08, 0.4, and 4 W/kg (with 10, 10, 12, and 9 rats, respectively), while cage control rats were kept in the animal facility (11 rats). Dams were exposed from days 6 to 21 of gestation and then three newborns per litter were further exposed from birth to day 35 postnatal. On day 35 after birth, all pups were sacrificed and sera collected. The screening of sera for antibodies directed against 15 different antigens related to damage and/or pathological markers was conducted using enzyme-linked immunosorbent assay (ELISA). No change in humoral response of young pups was observed, regardless of the types of biomarker and SAR levels. This study also provided some data on gestational outcome following in utero exposure to Wi-Fi signals. Mass evaluation of dams and pups and the number of pups per litter was monitored, and the genital tracts of young rats were observed for abnormalities by measuring anogenital distance. Under these experimental conditions, our observations suggest a lack of adverse effects of Wi-Fi exposure on delivery and general condition of the animals.


Subject(s)
Antibodies/blood , Antibodies/immunology , Maternal Exposure/adverse effects , Pregnancy Outcome , Wireless Technology , Animals , Biomarkers/blood , Body Size/radiation effects , Delivery, Obstetric , Female , Follow-Up Studies , Growth and Development/radiation effects , Litter Size/radiation effects , Pregnancy , Radio Waves/adverse effects , Rats , Rats, Wistar
4.
Int J Biochem Cell Biol ; 64: 167-73, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25882491

ABSTRACT

In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions.


Subject(s)
Autophagy , Proteasome Endopeptidase Complex/physiology , Autophagy-Related Protein 5 , Autophagy-Related Proteins , Gene Expression , HCT116 Cells , HeLa Cells , Humans , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Int J Biochem Cell Biol ; 64: 136-46, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25862283

ABSTRACT

Bax cytosol-to-mitochondria translocation is a central event of the intrinsic pathway of apoptosis. Bcl-xL is an important regulator of this event and was recently shown to promote the retrotranslocation of mitochondrial Bax to the cytosol. The present study identifies a new aspect of the regulation of Bax localization by Bcl-xL: in addition to its role in Bax inhibition and retrotranslocation, we found that, like with Bcl-2, an increase of Bcl-xL expression levels led to an increase of Bax mitochondrial content. This finding was substantiated both in pro-lymphocytic FL5.12 cells and a yeast reporting system. Bcl-xL-dependent increase of mitochondrial Bax is counterbalanced by retrotranslocation, as we observed that Bcl-xLΔC, which is unable to promote Bax retrotranslocation, was more efficient than the full-length protein in stimulating Bax relocation to mitochondria. Interestingly, cells overexpressing Bcl-xL were more sensitive to apoptosis upon treatment with the BH3-mimetic ABT-737, suggesting that despite its role in Bax inhibition, Bcl-xL also primes mitochondria to permeabilization and cytochrome c release.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Mitochondria/metabolism , Nitrophenols/pharmacology , Sulfonamides/pharmacology , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism , Animals , Apoptosis , Cell Line , Mice , Piperazines/pharmacology , Protein Multimerization , Protein Transport , Saccharomyces cerevisiae
6.
Radiat Res ; 179(6): 707-16, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23662649

ABSTRACT

The bioeffects of exposure to Wireless High-Fidelity (WiFi) signals on the developing nervous systems of young rodents was investigated by assessing the in vivo and in situ expression levels of three stress markers: 3-Nitrotyrosine (3-NT), an oxidative stress marker and two heat-shock proteins (Hsp25 and Hsp70). These biomarkers were measured in the brains of young rats exposed to a 2450 MHz WiFi signal by immunohistochemistry. Pregnant rats were first exposed or sham exposed to WiFi from day 6 to day 21 of gestation. In addition three newborns per litter were further exposed up to 5 weeks old. Daily 2-h exposures were performed blind in a reverberation chamber and whole-body specific absorption rate levels were 0, 0.08, 0.4 and 4 W/kg. 3-NT and stress protein expression was assayed in different areas of the hippocampus and cortex. No significant difference was observed among exposed and sham-exposed groups. These results suggest that repeated exposure to WiFi during gestation and early life has no deleterious effects on the brains of young rats.


Subject(s)
Brain/metabolism , Brain/radiation effects , Gene Expression Regulation/radiation effects , Heat-Shock Proteins/metabolism , Tyrosine/analogs & derivatives , Wireless Technology , Animals , Embryo, Mammalian/metabolism , Embryo, Mammalian/radiation effects , Female , Pregnancy , Rats , Rats, Wistar , Time Factors , Tyrosine/metabolism
7.
Neuron ; 76(3): 565-78, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23141068

ABSTRACT

Kainate receptors (KARs) play a key role in the regulation of synaptic networks. Here, we show that zinc, a cation released at a subset of glutamatergic synapses, potentiates glutamate currents mediated by homomeric and heteromeric KARs containing GluK3 at 10-100 µM concentrations, whereas it inhibits other KAR subtypes. Potentiation of GluK3 currents is mainly due to reduced desensitization, as shown by kinetic analysis and desensitization mutants. Crystallographic and mutation analyses revealed that a specific zinc binding site is formed at the base of the ligand binding domain (LBD) dimer interface by a GluK3-specific aspartate (Asp759), together with two conserved residues, His762 and Asp730, the latter located on the partner subunit. In addition, we propose that tetrameric GluK2/GluK3 receptors are likely assembled as pairs of heterodimeric LBDs. Therefore, zinc binding stabilizes the labile GluK3 dimer interface, slows desensitization, and potentiates currents, providing a mechanism for KAR potentiation at glutamatergic synapses.


Subject(s)
Protein Multimerization/physiology , Receptors, Kainic Acid/physiology , Zinc/physiology , Amino Acid Sequence , Animals , Binding Sites/physiology , Crystallography, X-Ray/methods , HEK293 Cells , Humans , Ligands , Molecular Sequence Data , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary/physiology , Rats , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism , GluK3 Kainate Receptor
SELECTION OF CITATIONS
SEARCH DETAIL