Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34166614

ABSTRACT

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Subject(s)
Endogenous Retroviruses/physiology , Homeostasis , Inflammation/microbiology , Inflammation/pathology , Microbiota , Animals , Bacteria/metabolism , Chromosomes, Bacterial/genetics , Diet, High-Fat , Inflammation/immunology , Inflammation/virology , Interferon Type I/metabolism , Keratinocytes/metabolism , Membrane Proteins/metabolism , Mice, Inbred C57BL , Nucleotidyltransferases/metabolism , Retroelements/genetics , Signal Transduction , Skin/immunology , Skin/microbiology , T-Lymphocytes/immunology , Transcription, Genetic
2.
Cell ; 174(5): 1067-1081.e17, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30078707

ABSTRACT

Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Long Interspersed Nucleotide Elements , Nuclear Matrix-Associated Proteins/chemistry , Polyadenylation , Polypyrimidine Tract-Binding Protein/chemistry , RNA-Binding Proteins/chemistry , RNA/chemistry , Alternative Splicing , Animals , Binding Sites , Exons , HeLa Cells , Humans , Introns , Mice , Mutation , Nucleotide Motifs , Phylogeny , Protein Binding , Protein Interaction Mapping , RNA Splicing
3.
Nature ; 616(7957): 563-573, 2023 04.
Article in English | MEDLINE | ID: mdl-37046094

ABSTRACT

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Subject(s)
Endogenous Retroviruses , Immunotherapy , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/virology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/virology , Disease Models, Animal , Endogenous Retroviruses/immunology , Immunotherapy/methods , Lung/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/virology , Tumor Microenvironment , B-Lymphocytes/immunology , Cohort Studies , Antibodies/immunology , Antibodies/therapeutic use
4.
Blood ; 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39476124

ABSTRACT

Despite several approved therapies, multiple myeloma (MM) remains an incurable disease with high unmet medical need. "Off-the-shelf" T-cell bispecific antibodies (TCBs) targeting BCMA and GPRC5D have demonstrated high objective response rates (ORR) in heavily pre-treated MM patients, however, primary resistance, short duration of response and relapse driven by antigen shift frequently occurs. Although GPRC5D represents the most selective target in MM, recent findings indicate antigen loss occurs more frequently than with BCMA. Thus, anti-GPRC5D immunotherapies must hit hard during a short period of time to kill as many myeloma cells as possible. Here, we characterize forimtamig, a novel GPRC5D-targeting TCB with 2+1 format, using preclinical models of MM. Bivalent binding of forimtamig to the N-terminus of GPRC5D confers higher affinity as compared to classical 1+1 TCB formats correlating with formation of more stable immunological synapses and higher potency in tumor cell killing and T cell activation. Using an orthotopic mouse model of MM, forimtamig recruited T effector cells to the bone marrow and induced rapid tumor killing even after the introduction of step-up dosing to mitigate cytokine release. Combination of forimtamig with standard-of-care (SoC) agents including anti-CD38 antibodies, immunomodulatory drugs and proteasome inhibitors improved depth and duration of response. The combination of forimtamig with novel therapeutic agents including BCMA-TCB and Cereblon E3 Ligase Modulatory Drugs (CELMoDs) was potent and prevented occurrence of GPRC5D-negative tumor relapse. Forimtamig is currently being evaluated in Phase 1 clinical trials in relapsed and refractory myeloma (RRMM) patients for monotherapy and in combination treatments. NCT04557150.

5.
Genome Res ; 29(10): 1578-1590, 2019 10.
Article in English | MEDLINE | ID: mdl-31537638

ABSTRACT

Dysregulated endogenous retroelements (EREs) are increasingly implicated in the initiation, progression, and immune surveillance of human cancer. However, incomplete knowledge of ERE activity limits mechanistic studies. By using pan-cancer de novo transcript assembly, we uncover the extent and complexity of ERE transcription. The current assembly doubled the number of previously annotated transcripts overlapping with long-terminal repeat (LTR) elements, several thousand of which were expressed specifically in one or a few related cancer types. Exemplified in melanoma, LTR-overlapping transcripts were highly predictable, disease prognostic, and closely linked with molecularly defined subtypes. They further showed the potential to affect disease-relevant genes, as well as produce novel cancer-specific antigenic peptides. This extended view of LTR elements provides the framework for functional validation of affected genes and targets for cancer immunotherapy.


Subject(s)
Neoplasms/genetics , Retroelements/genetics , Transcriptome/genetics , Gene Expression Profiling , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms/therapy , Phylogeny , Retroelements/immunology , Terminal Repeat Sequences/genetics , Transcriptome/immunology
6.
PLoS Pathog ; 16(5): e1008605, 2020 05.
Article in English | MEDLINE | ID: mdl-32453763

ABSTRACT

As obligate parasites, viruses highjack, modify and repurpose the cellular machinery for their own replication. Viral proteins have, therefore, evolved biological functions, such as signalling potential, that alter host cell physiology in ways that are still incompletely understood. Retroviral envelope glycoproteins interact with several host proteins, extracellularly with their cellular receptor and anti-envelope antibodies, and intracellularly with proteins of the cytoskeleton or sorting, endocytosis and recirculation pathways. Here, we examined the impact of endogenous retroviral envelope glycoprotein expression and interaction with host proteins, particularly antibodies, on the cell, independently of retroviral infection. We found that in the commonly used C57BL/6 substrains of mice, where murine leukaemia virus (MLV) envelope glycoproteins are expressed by several endogenous MLV proviruses, the highest expressed MLV envelope glycoprotein is under the control of an immune-responsive cellular promoter, thus linking MLV envelope glycoprotein expression with immune activation. We further showed that antibody ligation induces extensive internalisation from the plasma membrane into endocytic compartments of MLV envelope glycoproteins, which are not normally subject to constitutive endocytosis. Importantly, antibody binding and internalisation of MLV envelope glycoproteins initiates signalling cascades in envelope-expressing murine lymphocytic cell lines, leading to cellular activation. Similar effects were observed by MLV envelope glycoprotein ligation by its cellular receptor mCAT-1, and by overexpression in human lymphocytic cells, where it required an intact tyrosine-based YXXΦ motif in the envelope glycoprotein cytoplasmic tail. Together, these results suggest that signalling potential is a general property of retroviral envelope glycoproteins and, therefore, a target for intervention.


Subject(s)
Antibodies, Viral/immunology , Calcium Channels/immunology , Cell Membrane/immunology , Endocytosis/immunology , Leukemia Virus, Murine/immunology , TRPV Cation Channels/immunology , Viral Envelope Proteins/immunology , Animals , Humans , Mice , Mice, Inbred BALB C
7.
Blood ; 133(10): 1108-1118, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30700420

ABSTRACT

Best known for presenting antigenic peptides to CD4+ T cells, major histocompatibility complex class II (MHC II) also transmits or may modify intracellular signals. Here, we show that MHC II cell-autonomously regulates the balance between self-renewal and differentiation in B-cell precursors, as well as in malignant B cells. Initiation of MHC II expression early during bone marrow B-cell development limited the occupancy of cycling compartments by promoting differentiation, thus regulating the numerical output of B cells. MHC II deficiency preserved stem cell characteristics in developing pro-B cells in vivo, and ectopic MHC II expression accelerated hematopoietic stem cell differentiation in vitro. Moreover, MHC II expression restrained growth of murine B-cell leukemia cell lines in vitro and in vivo, independently of CD4+ T-cell surveillance. Our results highlight an important cell-intrinsic contribution of MHC II expression to establishing the differentiated B-cell phenotype.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation , Histocompatibility Antigens Class II/immunology , Animals , Antigen Presentation , Bone Marrow , Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , DNA-Binding Proteins/genetics , Disease Progression , Female , Histocompatibility Antigens Class II/genetics , Homeodomain Proteins/genetics , Leukemia, B-Cell/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL
8.
Bioessays ; 41(2): e1800132, 2019 02.
Article in English | MEDLINE | ID: mdl-30706962

ABSTRACT

Retrotransposon-derived elements (RDEs) can disrupt gene expression, but are nevertheless widespread in metazoan genomes. This review presents a hypothesis that repressive RNA-binding proteins (RBPs) facilitate the large-scale accumulation of RDEs. Many RBPs bind RDEs in pre-mRNAs to repress the effects of RDEs on RNA processing, or the formation of inverted repeat RNA structures. RDE-binding RBPs often assemble on extended, multivalent binding sites across the RDE, which ensures repression of cryptic splice or polyA sites. RBPs thereby minimize the effects of RDEs on gene expression, which likely reduces the negative selection against RDEs. While mutations that change splice sites in RDEs act as an off-on switch in exon formation, mutations that decrease the multivalency of RBP binding sites resemble a rheostat that enables a more gradual evolution of new RDE-derived exons. RBPs might also repress aberrant processing of active retrotransposons, thus increasing the chance that full-length copies are made. Taken together, in this review, it is proposed that RBPs facilitate the widespread accumulation of intronic RDEs by repressing RNA processing while chaperoning their potential to gradually evolve into new exons.


Subject(s)
Genome , Models, Genetic , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Retroelements/genetics , Animals , Evolution, Molecular , Humans
9.
Proc Natl Acad Sci U S A ; 114(21): 5425-5430, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28487484

ABSTRACT

MicroRNAs (miRNAs) play critical roles in a broad variety of biological processes by inhibiting translation initiation and by destabilizing target mRNAs. The CCR4-NOT complex effects miRNA-mediated silencing, at least in part through interactions with 4E-T (eIF4E transporter) protein, but the precise mechanism is unknown. Here we show that the cap-binding eIF4E-homologous protein 4EHP is an integral component of the miRNA-mediated silencing machinery. We demonstrate that the cap-binding activity of 4EHP contributes to the translational silencing by miRNAs through the CCR4-NOT complex. Our results show that 4EHP competes with eIF4E for binding to 4E-T, and this interaction increases the affinity of 4EHP for the cap. We propose a model wherein the 4E-T/4EHP interaction engenders a closed-loop mRNA conformation that blocks translational initiation of miRNA targets.


Subject(s)
MicroRNAs/metabolism , RNA Cap-Binding Proteins/metabolism , RNA Interference , RNA-Induced Silencing Complex/metabolism , Eukaryotic Initiation Factor-4E , HEK293 Cells , HeLa Cells , Humans , Nucleocytoplasmic Transport Proteins/metabolism
10.
EMBO J ; 34(5): 653-68, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25599992

ABSTRACT

Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3.


Subject(s)
Alternative Splicing/physiology , Gene Regulatory Networks/physiology , Nuclear Matrix-Associated Proteins/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , RNA-Binding Proteins/metabolism , Alternative Splicing/genetics , Computational Biology , DNA Primers/genetics , Electrophoresis, Polyacrylamide Gel , Gene Expression Profiling , Gene Regulatory Networks/genetics , HEK293 Cells , HeLa Cells , Humans , Microarray Analysis , RNA Interference , RNA, Small Interfering/genetics , Reverse Transcriptase Polymerase Chain Reaction
11.
Biochem Soc Trans ; 44(4): 1058-65, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27528752

ABSTRACT

Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/genetics , Polypyrimidine Tract-Binding Protein/genetics , RNA Precursors/genetics , RNA-Binding Proteins/genetics , Binding Sites/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Ligands , Models, Genetic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptides/genetics , Peptides/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , RNA Precursors/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins
12.
Methods ; 65(3): 274-87, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24184352

ABSTRACT

RNA-binding proteins (RBPs) are key players in the post-transcriptional regulation of gene expression. Precise knowledge about their binding sites is therefore critical to unravel their molecular function and to understand their role in development and disease. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) identifies protein-RNA crosslink sites on a genome-wide scale. The high resolution and specificity of this method are achieved by an intramolecular cDNA circularization step that enables analysis of cDNAs that truncated at the protein-RNA crosslink sites. Here, we describe the improved iCLIP protocol and discuss critical optimization and control experiments that are required when applying the method to new RBPs.


Subject(s)
Gene Library , Immunoprecipitation/methods , RNA-Binding Proteins/chemistry , RNA/chemistry , Binding Sites , DNA, Circular/chemistry , DNA, Circular/genetics , Gene Expression Regulation , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , Protein Binding , RNA/genetics , RNA-Binding Proteins/genetics , Ultraviolet Rays
13.
BMC Cancer ; 14: 352, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24886074

ABSTRACT

BACKGROUND: In a malignant tumour, cancer cells are embedded in stromal cells, namely cancer-associated fibroblasts (CAFs). These CAFs are now accepted as important players in cancer dynamics, being involved in tumour growth and progression. Although there are various reports on the interaction between tumour and stromal cells, the clinico-pathological significance of this cross-talk is still largely unknown. In this study, we aimed to characterise the expression of key metabolic proteins involved in glucose transport, pyruvate/lactate shuttle system, glycolytic metabolism and fatty acid oxidation in CAFs and tumour cells in different stages of malignant transformation. We further aimed to contextualise the clinico-pathological significance of these protein expression profiles with reference to known prognostic indicators, including biochemical recurrence in pT stage. METHODS: Prostate tissues were obtained from 480 patients with a median age of 64 years following radical prostatectomy with no previous hormonal therapy. Tissues were analysed for the expression of several key metabolism-related proteins in glands and surrounding fibroblasts by immunohistochemistry. Reliable markers of prognosis such as pT stage and biochemical recurrence were assessed for each case. RESULTS: We observed that prostate cancer cells did not rely mainly on glycolytic metabolism, while there was a high expression of MCT4 and CAIX - in CAFs. This corroborates the hypothesis of the "Reverse Warburg effect" in prostate cancer, in which fibroblasts are under oxidative stress and express CAIX, an established hypoxia marker. We found that alterations in the expression of metabolism-related proteins were already evident in the early stages of malignant transformation, suggesting the continuing alteration of CAFs from an early stage. Additionally, and for the first time, we show that cases showing high MCT4 expression in CAFs with concomitant strong MCT1 expression in prostate cancer (PCa) cells are associated with poor clinical outcome, namely pT3 stage of the tumour. CONCLUSIONS: In summary, this work demonstrates for the first time the clinico-pathological significance of the lactate shuttle in prostate cancer. It also suggests that other alterations in CAFs may be useful prognostic factors, and further supports the use of MCT1/MCT4 as targets for PCa therapy.


Subject(s)
Energy Metabolism , Fibroblasts/chemistry , Lactic Acid/analysis , Prostatic Neoplasms/chemistry , Stromal Cells/chemistry , Biological Transport , Fibroblasts/pathology , Humans , Kallikreins/blood , Male , Middle Aged , Monocarboxylic Acid Transporters/analysis , Muscle Proteins/analysis , Neoplasm Staging , Prostate-Specific Antigen/blood , Prostatectomy , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Stromal Cells/pathology , Symporters/analysis , Treatment Outcome
14.
Front Immunol ; 15: 1285049, 2024.
Article in English | MEDLINE | ID: mdl-38455061

ABSTRACT

Background: Downregulation of MHC class I expression and/or defects in the antigen presentation pathways are commonly reported in human cancers. Numerous studies previously have explored extensively the molecular mechanisms that underlie HLA-class I and Beta2-Microglobulin (B2M) downregulation. However, the techniques presently available to detect expression of MHC class I proteins lack the robustness, specificity and sensitivity needed for systematic integration and analysis in clinical trials. Furthermore, the dynamics of HLA-class I and B2M expression have not been comprehensively studied as a potential biomarker for immunotherapy. Methods: Using novel, validated, immunohistochemistry (IHC)-based methods for quantifying B2M and HLA-A in tumor samples from diverse cancer types, we have determined loss of B2M and HLA-A proteins in 336 archived, primary specimens and 329 biopsies from metastatic patients collected during Roche-sponsored Phase 1 clinical trials investigating novel immunotherapy candidates as monotherapy or in combination with CPI. Results: Up to 56% of cases with B2M or HLA-A loss were noted in the investigated tumor types. The frequency of loss was dependent on indication and stage of disease and revealed heterogeneous expression patterns across patients. B2M and HLA-A loss was increased in metastatic lesions compared to primary tumors, indicating selection of MHC class I low clones in metastatic and refractory tumor cells. High on-treatment B2M expression correlated with successful clinical outcome (RECIST), while high baseline B2M did not. A treatment-induced increase of B2M expression was noted in most of the patients with low B2M levels at baseline. The triple biomarker combination of B2M, CD8 and PDL1 strongly improved response prediction to cancer immunotherapy. Conclusion: Our results indicate that B2M and HLA-A loss occurs frequently in tumors and is reversed in most instances following immunotherapy which supports the conclusion that MHC class I loss is not the dominant resistance mechanism to CPI treatment. This investigation reveals a highly dynamic expression of HLA-A and B2M in tumors affected by indication, metastatic status, immunophenotype and immunotherapy treatment. Baseline expression levels of B2M on tumors may be of utility as a constituent of a biomarker panel used for selecting patients for immunotherapy clinical trials.


Subject(s)
Neoplasms , beta 2-Microglobulin , Humans , beta 2-Microglobulin/genetics , Histocompatibility Antigens Class I/genetics , Immunotherapy , HLA-A Antigens
15.
NAR Cancer ; 5(3): zcad040, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37502711

ABSTRACT

Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.

16.
J Clin Invest ; 133(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37192000

ABSTRACT

Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Endogenous Retroviruses , Lung Neoplasms , Humans , Calbindins/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Cellular Senescence/genetics , Endogenous Retroviruses/genetics , Lung Neoplasms/genetics , Proviruses/genetics
17.
Genome Biol ; 22(1): 136, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33952325

ABSTRACT

BACKGROUND: Eukaryotic genomes undergo pervasive transcription, leading to the production of many types of stable and unstable RNAs. Transcription is not restricted to regions with annotated gene features but includes almost any genomic context. Currently, the source and function of most RNAs originating from intergenic regions in the human genome remain unclear. RESULTS: We hypothesize that many intergenic RNAs can be ascribed to the presence of as-yet unannotated genes or the "fuzzy" transcription of known genes that extends beyond the annotated boundaries. To elucidate the contributions of these two sources, we assemble a dataset of more than 2.5 billion publicly available RNA-seq reads across 5 human cell lines and multiple cellular compartments to annotate transcriptional units in the human genome. About 80% of transcripts from unannotated intergenic regions can be attributed to the fuzzy transcription of existing genes; the remaining transcripts originate mainly from putative long non-coding RNA loci that are rarely spliced. We validate the transcriptional activity of these intergenic RNAs using independent measurements, including transcriptional start sites, chromatin signatures, and genomic occupancies of RNA polymerase II in various phosphorylation states. We also analyze the nuclear localization and sensitivities of intergenic transcripts to nucleases to illustrate that they tend to be rapidly degraded either on-chromatin by XRN2 or off-chromatin by the exosome. CONCLUSIONS: We provide a curated atlas of intergenic RNAs that distinguishes between alternative processing of well-annotated genes from independent transcriptional units based on the combined analysis of chromatin signatures, nuclear RNA localization, and degradation pathways.


Subject(s)
DNA, Intergenic/genetics , Genes , RNA, Messenger/genetics , Cell Line , Chromatin/genetics , Endonucleases/metabolism , Humans , RNA, Messenger/metabolism , Transcription, Genetic
18.
Oncogene ; 40(37): 5567-5578, 2021 09.
Article in English | MEDLINE | ID: mdl-34145398

ABSTRACT

The ubiquitin-proteasome system maintains protein homoeostasis, underpins the cell cycle, and is dysregulated in cancer. However, the role of individual E3 ubiquitin ligases, which mediate the final step in ubiquitin-mediated proteolysis, remains incompletely understood. Identified through screening for cancer-specific endogenous retroviral transcripts, we show that the little-studied E3 ubiquitin ligase HECTD2 exerts dominant control of tumour progression in melanoma. HECTD2 cell autonomously drives the proliferation of human and murine melanoma cells by accelerating the cell cycle. HECTD2 additionally regulates cancer cell production of immune mediators, initiating multiple immune suppressive pathways, which include the cyclooxygenase 2 (COX2) pathway. Accordingly, higher HECTD2 expression is associated with weaker anti-tumour immunity and unfavourable outcome of PD-1 blockade in human melanoma and counteracts immunity against a model tumour antigen in murine melanoma. This central, multifaceted role of HECTD2 in cancer cell-autonomous proliferation and in immune evasion may provide a single target for a multipronged therapy of melanoma.


Subject(s)
Immune Evasion , Ubiquitin-Protein Ligases , Animals , Cell Division , Cell Proliferation , Humans , Lipogenesis , Melanoma , Mice , Proteolysis
19.
Cancer Cell ; 39(11): 1497-1518.e11, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34715028

ABSTRACT

ADAPTeR is a prospective, phase II study of nivolumab (anti-PD-1) in 15 treatment-naive patients (115 multiregion tumor samples) with metastatic clear cell renal cell carcinoma (ccRCC) aiming to understand the mechanism underpinning therapeutic response. Genomic analyses show no correlation between tumor molecular features and response, whereas ccRCC-specific human endogenous retrovirus expression indirectly correlates with clinical response. T cell receptor (TCR) analysis reveals a significantly higher number of expanded TCR clones pre-treatment in responders suggesting pre-existing immunity. Maintenance of highly similar clusters of TCRs post-treatment predict response, suggesting ongoing antigen engagement and survival of families of T cells likely recognizing the same antigens. In responders, nivolumab-bound CD8+ T cells are expanded and express GZMK/B. Our data suggest nivolumab drives both maintenance and replacement of previously expanded T cell clones, but only maintenance correlates with response. We hypothesize that maintenance and boosting of a pre-existing response is a key element of anti-PD-1 mode of action.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors/administration & dosage , Kidney Neoplasms/drug therapy , Nivolumab/administration & dosage , Receptors, Antigen, T-Cell/genetics , CD8-Positive T-Lymphocytes , Carcinoma, Renal Cell/genetics , Clinical Trials, Phase II as Topic , Endogenous Retroviruses/genetics , Gene Expression Profiling/methods , Genomics/methods , Humans , Immune Checkpoint Inhibitors/pharmacology , Kidney Neoplasms/genetics , Nivolumab/pharmacology , Prospective Studies , Sequence Analysis, RNA , Single-Cell Analysis , Tumor Escape , Tumor Microenvironment , Exome Sequencing
20.
Nat Genet ; 52(12): 1294-1302, 2020 12.
Article in English | MEDLINE | ID: mdl-33077915

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and a regulator of several physiological processes. ACE2 has recently been proposed to be interferon (IFN) inducible, suggesting that SARS-CoV-2 may exploit this phenomenon to enhance viral spread and questioning the efficacy of IFN treatment in coronavirus disease 2019. Using a recent de novo transcript assembly that captured previously unannotated transcripts, we describe a new isoform of ACE2, generated by co-option of intronic retroelements as promoter and alternative exon. The new transcript, termed MIRb-ACE2, exhibits specific expression patterns across the aerodigestive and gastrointestinal tracts and is highly responsive to IFN stimulation. In contrast, canonical ACE2 expression is unresponsive to IFN stimulation. Moreover, the MIRb-ACE2 translation product is a truncated, unstable ACE2 form, lacking domains required for SARS-CoV-2 binding and is therefore unlikely to contribute to or enhance viral infection.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , Interferons/metabolism , Retroelements/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Cell Line , Chlorocebus aethiops , Enzyme Induction , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Viral , HEK293 Cells , Humans , Isoenzymes/biosynthesis , Isoenzymes/genetics , Protein Stability , RNA-Seq , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , Tissue Distribution , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL