Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Neuroimage ; 287: 120518, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38219841

ABSTRACT

Stroke volume is a key determinant of infarct severity and an important metric for evaluating treatments. However, accurate estimation of stroke volume can be challenging, due to the often confined 2-dimensional nature of available data. Here, we introduce a comprehensive semi-automated toolkit to reliably estimate stroke volumes based on (1) whole brains ex-vivo magnetic resonance imaging (MRI) and (2) brain sections that underwent immunofluorescence staining. We located and quantified infarct areas from MRI three days (acute) and 28 days (chronic) after photothrombotic stroke induction in whole mouse brains. MRI results were compared with measures obtained from immunofluorescent histologic sections of the same brains. We found that infarct volume determined by post-mortem MRI was highly correlated with a deviation of only 6.6 % (acute) and 4.9 % (chronic) to the measurements as determined in the histological brain sections indicating that both methods are capable of accurately assessing brain tissue damage (Pearson r > 0.9, p < 0.001). The Dice similarity coefficient (DC) showed a high degree of coherence (DC > 0.8) between MRI-delineated regions of interest (ROIs) and ROIs obtained from histologic sections at four to six pre-defined landmarks, with histology-based delineation demonstrating higher inter-operator similarity compared to MR images. We further investigated stroke-related scarring and post-ischemic angiogenesis in cortical peri­infarct regions and described a negative correlation between GFAP+fluorescence intensity and MRI-obtained lesion size.


Subject(s)
Brain Ischemia , Stroke , Mice , Animals , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Stroke Volume , Rodentia , Stroke/pathology , Magnetic Resonance Imaging/methods , Infarction
2.
HPB (Oxford) ; 26(4): 521-529, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185541

ABSTRACT

BACKGROUND: This animal study investigates the hypothesis of an immature liver growth following ALPPS (associating liver partition and portal vein ligation for staged hepatectomy) by measuring liver volume and function using gadoxetic acid avidity in magnetic resonance imaging (MRI) in models of ALPPS, major liver resection (LR) and portal vein ligation (PVL). METHODS: Wistar rats were randomly allocated to ALPPS, LR or PVL. In contrast-enhanced MRI scans with gadoxetic acid (Primovist®), liver volume and function of the right median lobe (=future liver remnant, FLR) and the deportalized lobes (DPL) were assessed until post-operative day (POD) 5. Liver functionFLR/DPL was defined as the inverse value of time from injection of gadoxetic acid to the blood pool-corrected maximum signal intensityFLR/DPL multiplied by the volumeFLR/DPL. RESULTS: In ALPPS (n = 6), LR (n = 6) and PVL (n = 6), volumeFLR and functionFLR increased proportionally, except on POD 1. Thereafter, functionFLR exceeded volumeFLR increase in LR and ALPPS, but not in PVL. Total liver function was significantly reduced after LR until POD 3, but never undercuts 60% of its pre-operative value following ALPPS and PVL. DISCUSSION: This study shows for the first time that functional increase is proportional to volume increase in ALPPS using gadoxetic acid avidity in MRI.


Subject(s)
Gadolinium DTPA , Liver Neoplasms , Liver Regeneration , Rats , Animals , Rats, Wistar , Liver/diagnostic imaging , Liver/surgery , Liver/blood supply , Hepatectomy/methods , Portal Vein/diagnostic imaging , Portal Vein/surgery , Portal Vein/pathology , Liver Neoplasms/surgery , Magnetic Resonance Imaging , Ligation/methods
3.
Data Brief ; 53: 110188, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38406243

ABSTRACT

This dataset offers images of mouse brains impacted by photothrombotic stroke in the sensorimotor cortex published by Weber et al. NeuroImage (2024). Data is gathered using two primary techniques: (1) whole-brain ex-vivo magnetic resonance imaging (MRI) and (2) 40 µm thick coronal histological sections that undergo immunofluorescence staining with NeuroTrace. Infarct areas and volumes are assessed through MRI at two distinct time frames-three days (acute) and 28 days (chronic) following photothrombotic stroke induction. Subsequently, the brains are sectioned into 40 µm thick coronal slices, stained with NeuroTrace, and imaged as whole sections. The dataset holds considerable value for reuse, particularly for researchers focused on stroke volume estimation methods as well as those interested in comparing the efficacy of MRI and histological techniques.

SELECTION OF CITATIONS
SEARCH DETAIL