Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 31(10): 1545-1559, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34791244

ABSTRACT

Changes in the N-glycosylation of immunoglobulin G (IgG) are often observed in pathological states, such as autoimmune, inflammatory, neurodegenerative, cardiovascular diseases and some types of cancer. However, in most cases, it is not clear if the disease onset causes these changes, or if the changes in IgG N-glycosylation are among the risk factors for the diseases. The aim of this study was to investigate the casual relationships between IgG N-glycosylation traits and 12 diseases, in which the alterations of IgG N-glycome were previously reported, using two sample Mendelian randomization (MR) approach. We have performed two sample MR using publicly available summary statistics of genome-wide association studies of IgG N-glycosylation and disease risks. Our results indicate positive causal effect of systemic lupus erythematosus (SLE) on the abundance of N-glycans with bisecting N-acetylglucosamine in the total IgG N-glycome. Therefore, we suggest regarding this IgG glycosylation trait as a biomarker of SLE. We also emphasize the need for more powerful GWAS studies of IgG N-glycosylation to further elucidate the causal effect of IgG N-glycome on the diseases.


Subject(s)
Immunoglobulin G , Lupus Erythematosus, Systemic , Genome-Wide Association Study , Glycosylation , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Lupus Erythematosus, Systemic/genetics , Polysaccharides/genetics
2.
Nucleic Acids Res ; 50(W1): W51-W56, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35446421

ABSTRACT

We present ANANASTRA, https://ananastra.autosome.org, a web server for the identification and annotation of regulatory single-nucleotide polymorphisms (SNPs) with allele-specific binding events. ANANASTRA accepts a list of dbSNP IDs or a VCF file and reports allele-specific binding (ASB) sites of particular transcription factors or in specific cell types, highlighting those with ASBs significantly enriched at SNPs in the query list. ANANASTRA is built on top of a systematic analysis of allelic imbalance in ChIP-Seq experiments and performs the ASB enrichment test against background sets of SNPs found in the same source experiments as ASB sites but not displaying significant allelic imbalance. We illustrate ANANASTRA usage with selected case studies and expect that ANANASTRA will help to conduct the follow-up of GWAS in terms of establishing functional hypotheses and designing experimental verification.


Subject(s)
Polymorphism, Single Nucleotide , Transcription Factors , Alleles , Binding Sites , Genome-Wide Association Study , Protein Binding , Transcription Factors/chemistry , Transcription Factors/metabolism , DNA-Binding Proteins
3.
Hum Mol Genet ; 30(13): 1259-1270, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33710309

ABSTRACT

The N-glycosylation of immunoglobulin G (IgG) affects its structure and function. It has been demonstrated that IgG N-glycosylation patterns are inherited as complex quantitative traits. Genome-wide association studies identified loci harboring genes encoding enzymes directly involved in protein glycosylation as well as loci likely to be involved in regulation of glycosylation biochemical pathways. Many of these loci could be linked to immune functions and risk of inflammatory and autoimmune diseases. The aim of the present study was to discover and replicate new loci associated with IgG N-glycosylation and to investigate possible pleiotropic effects of these loci onto immune function and the risk of inflammatory and autoimmune diseases. We conducted a multivariate genome-wide association analysis of 23 IgG N-glycosylation traits measured in 8090 individuals of European ancestry. The discovery stage was followed up by replication in 3147 people and in silico functional analysis. Our study increased the total number of replicated loci from 22 to 29. For the discovered loci, we suggest a number of genes potentially involved in the control of IgG N-glycosylation. Among the new loci, two (near RNF168 and TNFRSF13B) were previously implicated in rare immune deficiencies and were associated with levels of circulating immunoglobulins. For one new locus (near AP5B1/OVOL1), we demonstrated a potential pleiotropic effect on the risk of asthma. Our findings underline an important link between IgG N-glycosylation and immune function and provide new clues to understanding their interplay.


Subject(s)
Genetic Loci/genetics , Genetic Pleiotropy/genetics , Genome-Wide Association Study/methods , Immunity/genetics , Immunoglobulin G/genetics , Alleles , Autoimmune Diseases/genetics , Cohort Studies , Computer Simulation , Gene Frequency , Genome-Wide Association Study/statistics & numerical data , Genotype , Glycosylation , Humans , Immunoglobulin G/metabolism , Inflammation/genetics , Multivariate Analysis , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
4.
Nucleic Acids Res ; 49(D1): D1347-D1350, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33245779

ABSTRACT

Genome-wide association studies have provided a vast array of publicly available SNP × phenotype association results. However, they are often in disparate repositories and formats, making downstream analyses difficult and time consuming. PheLiGe (https://phelige.com) is a database that provides easy access to such results via a web interface. The underlying database currently stores >75 billion genotype-phenotype associations from 7347 genome-wide and 1.2 million region-wide (e.g. cis-eQTL) association scans. The web interface allows for investigation of regional genotype-phenotype associations across many phenotypes, giving insights into the biological function affected by the variant in question. Furthermore, PheLiGe can compare regional patterns of association between different traits. This analysis can ascertain whether a co-association is due to pleiotropy or linkage. Moreover, comparison of association patterns for a complex trait of interest and gene expression and protein levels can implicate causal genes.


Subject(s)
Databases, Genetic , Disease/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Software , Genetic Linkage , Genome, Human , Genome-Wide Association Study , Genotype , Humans , Internet , Phenotype , Quantitative Trait, Heritable
5.
Eur Spine J ; 31(7): 1906-1915, 2022 07.
Article in English | MEDLINE | ID: mdl-35662366

ABSTRACT

PURPOSE: Risk factors for chronic back pain (CBP) may share underlying genetic factors, making them difficult to study using conventional methods. We conducted a bi-directional Mendelian randomisation (MR) study to examine the causal effects of risk factors (education, smoking, alcohol consumption, physical activity, sleep and depression) on CBP and the causal effect of CBP on the same risk factors. METHODS: Genetic instruments for risk factors and CBP were obtained from the largest published genome-wide association studies (GWAS) of risk factor traits conducted in individuals of European ancestry. We used inverse weighted variance meta-analysis (IVW), Causal Analysis Using Summary Effect (CAUSE) and sensitivity analyses to examine evidence for causal associations. We interpreted exposure-outcome associations as being consistent with a causal relationship if results with IVW or CAUSE were statistically significant after accounting for multiple statistical testing (p < 0.003), and the direction and magnitude of effect estimates were concordant between IVW, CAUSE, and sensitivity analyses. RESULTS: We found evidence for statistically significant causal associations between greater education (OR per 4.2 years of schooling = 0.54), ever smoking (OR = 1.27), greater alcohol consumption (OR = 1.29 per consumption category increase) and major depressive disorder (OR = 1.41) and risk of CBP. Conversely, we found evidence for significant causal associations between CBP and greater alcohol consumption (OR = 1.19) and between CBP and smoking (OR = 1.21). Other relationships did not meet our pre-defined criteria for causal association. CONCLUSION: Fewer years of schooling, smoking, greater alcohol consumption, and major depressive disorder increase the risk of CBP. CBP increases the risk of greater alcohol consumption and smoking.


Subject(s)
Depressive Disorder, Major , Genome-Wide Association Study , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , Alcohol Drinking/genetics , Back Pain/epidemiology , Back Pain/genetics , Humans , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide
6.
Glycobiology ; 31(2): 82-88, 2021 02 09.
Article in English | MEDLINE | ID: mdl-32521004

ABSTRACT

Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the 16 loci reported previously, 15 were replicated in our study. For the remaining locus (near the KREMEN1 gene), the replication power was low, and hence, replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The 15 replicated loci present a good target for further functional studies. Among these, eight loci contain genes encoding glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4 and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo.


Subject(s)
Glycosyltransferases/metabolism , Membrane Proteins/metabolism , Cohort Studies , Computational Biology , Glycosylation , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Polysaccharides/metabolism
7.
Hum Mol Genet ; 28(12): 2062-2077, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31163085

ABSTRACT

Glycosylation is a common post-translational modification of proteins. Glycosylation is associated with a number of human diseases. Defining genetic factors altering glycosylation may provide a basis for novel approaches to diagnostic and pharmaceutical applications. Here we report a genome-wide association study of the human blood plasma N-glycome composition in up to 3811 people measured by Ultra Performance Liquid Chromatography (UPLC) technology. Starting with the 36 original traits measured by UPLC, we computed an additional 77 derived traits leading to a total of 113 glycan traits. We studied associations between these traits and genetic polymorphisms located on human autosomes. We discovered and replicated 12 loci. This allowed us to demonstrate an overlap in genetic control between total plasma protein and IgG glycosylation. The majority of revealed loci contained genes that encode enzymes directly involved in glycosylation (FUT3/FUT6, FUT8, B3GAT1, ST6GAL1, B4GALT1, ST3GAL4, MGAT3 and MGAT5) and a known regulator of plasma protein fucosylation (HNF1A). However, we also found loci that could possibly reflect other more complex aspects of glycosylation process. Functional genomic annotation suggested the role of several genes including DERL3, CHCHD10, TMEM121, IGH and IKZF1. The hypotheses we generated may serve as a starting point for further functional studies in this research area.


Subject(s)
Fucosyltransferases/genetics , Glycosyltransferases/genetics , Polysaccharides/blood , Chromatography, High Pressure Liquid , Cohort Studies , Fucosyltransferases/blood , Fucosyltransferases/chemistry , Genome-Wide Association Study , Glucuronosyltransferase/blood , Glucuronosyltransferase/chemistry , Glycosylation , Hepatocyte Nuclear Factor 1-alpha/blood , Hepatocyte Nuclear Factor 1-alpha/chemistry , Humans , Immunoglobulin G/metabolism , Membrane Proteins/metabolism , Polymorphism, Genetic , Quantitative Trait Loci
8.
Ann Rheum Dis ; 80(9): 1227-1235, 2021 09.
Article in English | MEDLINE | ID: mdl-33926923

ABSTRACT

BACKGROUND AND OBJECTIVES: Chronic widespread musculoskeletal pain (CWP) is a symptom of fibromyalgia and a complex trait with poorly understood pathogenesis. CWP is heritable (48%-54%), but its genetic architecture is unknown and candidate gene studies have produced inconsistent results. We conducted a genome-wide association study to get insight into the genetic background of CWP. METHODS: Northern Europeans from UK Biobank comprising 6914 cases reporting pain all over the body lasting >3 months and 242 929 controls were studied. Replication of three independent genome-wide significant single nucleotide polymorphisms was attempted in six independent European cohorts (n=43 080; cases=14 177). Genetic correlations with risk factors, tissue specificity and colocalisation were examined. RESULTS: Three genome-wide significant loci were identified (rs1491985, rs10490825, rs165599) residing within the genes Ring Finger Protein 123 (RNF123), ATPase secretory pathway Ca2+transporting 1 (ATP2C1) and catechol-O-methyltransferase (COMT). The RNF123 locus was replicated (meta-analysis p=0.0002), the ATP2C1 locus showed suggestive association (p=0.0227) and the COMT locus was not replicated. Partial genetic correlation between CWP and depressive symptoms, body mass index, age of first birth and years of schooling were identified. Tissue specificity and colocalisation analysis highlight the relevance of skeletal muscle in CWP. CONCLUSIONS: We report a novel association of RNF123 locus and a suggestive association of ATP2C1 locus with CWP. Both loci are consistent with a role of calcium regulation in CWP. The association with COMT, one of the most studied genes in chronic pain field, was not confirmed in the replication analysis.


Subject(s)
Calcium-Transporting ATPases/genetics , Chronic Pain/genetics , Musculoskeletal Pain/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Body Mass Index , Catechol O-Methyltransferase/genetics , Chronic Pain/physiopathology , Depression/genetics , Female , Fibromyalgia/physiopathology , Genome-Wide Association Study , Humans , Male , Middle Aged , Musculoskeletal Pain/physiopathology , Polymorphism, Single Nucleotide , Young Adult
9.
Adv Exp Med Biol ; 1325: 151-171, 2021.
Article in English | MEDLINE | ID: mdl-34495534

ABSTRACT

Although changes in protein glycosylation are observed in a wide range of diseases and pathological states, the examples of use of glycans as biomarkers and therapeutic targets are limited. This is not in small part because the understanding of human glycome regulation in vivo is incomplete and fragmented. Combination of human glycomics and genomics offers a powerful "data-driven hypotheses" approach to dissect the complex human glycobiology in vivo in an agnostic manner.In this chapter we review a decade of quantitative genetic studies of human N-glycome, including studies of its heritability and gene-mapping via genome-wide association studies (GWASs). We show that GWASs of human N-glycome start revealing regulators of the biochemical network of N-glycosylation. Some of these regulators demonstrate pleiotropic effects on human disease, especially autoimmune and inflammatory. We emphasize the use of in silico functional methods and multi-omics approaches to prioritize functional mechanisms to be further validated in laboratory experiments. This combined approach will lead to better understanding of mechanisms of regulation of human protein glycosylation and will provide a rich source of etiologic insight, therapeutic interventions, and biomarkers.


Subject(s)
Genome-Wide Association Study , Glycomics , Genomics , Glycosylation , Humans , Polysaccharides
10.
PLoS Genet ; 14(9): e1007601, 2018 09.
Article in English | MEDLINE | ID: mdl-30261039

ABSTRACT

Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of chronic back pain (CBP). Adults of European ancestry were included from 15 cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and from the UK Biobank interim data release. CBP cases were defined as those reporting back pain present for ≥3-6 months; non-cases were included as comparisons ("controls"). Each cohort conducted genotyping using commercially available arrays followed by imputation. GWAS used logistic regression models with additive genetic effects, adjusting for age, sex, study-specific covariates, and population substructure. The threshold for genome-wide significance in the fixed-effect inverse-variance weighted meta-analysis was p<5×10(-8). Suggestive (p<5×10(-7)) and genome-wide significant (p<5×10(-8)) variants were carried forward for replication or further investigation in the remaining UK Biobank participants not included in the discovery sample. The discovery sample comprised 158,025 individuals, including 29,531 CBP cases. A genome-wide significant association was found for the intronic variant rs12310519 in SOX5 (OR 1.08, p = 7.2×10(-10)). This was subsequently replicated in 283,752 UK Biobank participants not included in the discovery sample, including 50,915 cases (OR 1.06, p = 5.3×10(-11)), and exceeded genome-wide significance in joint meta-analysis (OR 1.07, p = 4.5×10(-19)). We found suggestive associations at three other loci in the discovery sample, two of which exceeded genome-wide significance in joint meta-analysis: an intergenic variant, rs7833174, located between CCDC26 and GSDMC (OR 1.05, p = 4.4×10(-13)), and an intronic variant, rs4384683, in DCC (OR 0.97, p = 2.4×10(-10)). In this first reported meta-analysis of GWAS for CBP, we identified and replicated a genetic locus associated with CBP (SOX5). We also identified 2 other loci that reached genome-wide significance in a 2-stage joint meta-analysis (CCDC26/GSDMC and DCC).


Subject(s)
Back Pain/genetics , Chronic Pain/genetics , Genetic Loci , SOXD Transcription Factors/genetics , White People/genetics , Biomarkers, Tumor/genetics , DCC Receptor/genetics , DNA-Binding Proteins/genetics , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Introns/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding
11.
Biochim Biophys Acta Gen Subj ; 1862(10): 2124-2133, 2018 10.
Article in English | MEDLINE | ID: mdl-29981899

ABSTRACT

BACKGROUND: Low back pain (LBP) is the symptom of a group of syndromes with heterogeneous underlying mechanisms and molecular pathologies, making treatment selection and patient prognosis very challenging. Moreover, symptoms and prognosis of LBP are influenced by age, gender, occupation, habits, and psychological factors. LBP may be characterized by an underlying inflammatory process. Previous studies indicated a connection between inflammatory response and total plasma N-glycosylation. We wanted to identify potential changes in total plasma N-glycosylation pattern connected with chronic low back pain (CLBP), which could give an insight into the pathogenic mechanisms of the disease. METHODS: Plasma samples of 1128 CLBP patients and 760 healthy controls were collected in clinical centers in Italy, Belgium and Croatia and used for N-glycosylation profiling by hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) after N-glycans release, fluorescent labeling and clean-up. Observed N-glycosylation profiles have been compared with a cohort of 126 patients with acute inflammation that underwent abdominal surgery. RESULTS: We have found a statistically significant increase in the relative amount of high-branched (tri-antennary and tetra-antennary) N-glycan structures on CLBP patients' plasma glycoproteins compared to healthy controls. Furthermore, relative amounts of disialylated and trisialylated glycan structures were increased, while high-mannose and glycans containing bisecting N-acetylglucosamine decreased in CLBP. CONCLUSIONS: Observed changes in CLBP on the plasma N-glycome level are consistent with N-glycosylation changes usually seen in chronic inflammation. GENERAL SIGNIFICANCE: To our knowledge, this is a first large clinical study on CLBP patients and plasma N-glycome providing a new glycomics perspective on potential disease pathology.


Subject(s)
Glycomics/methods , Glycoproteins/metabolism , Low Back Pain/diagnosis , Polysaccharides/metabolism , Adult , Aged , Case-Control Studies , Female , Follow-Up Studies , Glycoproteins/analysis , Glycosylation , Humans , Low Back Pain/metabolism , Male , Middle Aged , Polysaccharides/analysis , Prognosis , Retrospective Studies
12.
Nature ; 466(7307): 707-13, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20686565

ABSTRACT

Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.


Subject(s)
Genetic Loci/genetics , Genome-Wide Association Study , Lipid Metabolism/genetics , Lipids/blood , Black or African American/genetics , Animals , Asian People/genetics , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Coronary Artery Disease/therapy , Europe/ethnology , Female , Genotype , Humans , Liver/metabolism , Male , Mice , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Reproducibility of Results , Triglycerides/blood , White People/genetics , Polypeptide N-acetylgalactosaminyltransferase
13.
Nature ; 467(7317): 832-8, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20881960

ABSTRACT

Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.


Subject(s)
Body Height/genetics , Genetic Loci/genetics , Genome, Human/genetics , Metabolic Networks and Pathways/genetics , Polymorphism, Single Nucleotide/genetics , Chromosomes, Human, Pair 3/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Phenotype
14.
Mol Cell Proteomics ; 13(6): 1598-610, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24719452

ABSTRACT

The biological and clinical relevance of glycosylation is becoming increasingly recognized, leading to a growing interest in large-scale clinical and population-based studies. In the past few years, several methods for high-throughput analysis of glycans have been developed, but thorough validation and standardization of these methods is required before significant resources are invested in large-scale studies. In this study, we compared liquid chromatography, capillary gel electrophoresis, and two MS methods for quantitative profiling of N-glycosylation of IgG in the same data set of 1201 individuals. To evaluate the accuracy of the four methods we then performed analysis of association with genetic polymorphisms and age. Chromatographic methods with either fluorescent or MS-detection yielded slightly stronger associations than MS-only and multiplexed capillary gel electrophoresis, but at the expense of lower levels of throughput. Advantages and disadvantages of each method were identified, which should inform the selection of the most appropriate method in future studies.


Subject(s)
High-Throughput Screening Assays/methods , Immunoglobulin G/genetics , Mass Spectrometry/methods , Polysaccharides/genetics , Adult , Chromatography, Liquid , Electrophoresis, Capillary , Glycosylation , Humans , Hydrophobic and Hydrophilic Interactions , Polymorphism, Genetic , Polysaccharides/isolation & purification
15.
PLoS Genet ; 8(2): e1002496, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22319458

ABSTRACT

The role of rare genetic variation in the etiology of complex disease remains unclear. However, the development of next-generation sequencing technologies offers the experimental opportunity to address this question. Several novel statistical methodologies have been recently proposed to assess the contribution of rare variation to complex disease etiology. Nevertheless, no empirical estimates comparing their relative power are available. We therefore assessed the parameters that influence their statistical power in 1,998 individuals Sanger-sequenced at seven genes by modeling different distributions of effect, proportions of causal variants, and direction of the associations (deleterious, protective, or both) in simulated continuous trait and case/control phenotypes. Our results demonstrate that the power of recently proposed statistical methods depend strongly on the underlying hypotheses concerning the relationship of phenotypes with each of these three factors. No method demonstrates consistently acceptable power despite this large sample size, and the performance of each method depends upon the underlying assumption of the relationship between rare variants and complex traits. Sensitivity analyses are therefore recommended to compare the stability of the results arising from different methods, and promising results should be replicated using the same method in an independent sample. These findings provide guidance in the analysis and interpretation of the role of rare base-pair variation in the etiology of complex traits and diseases.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Models, Statistical , Phospholipases A2/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase , Computer Simulation , Data Interpretation, Statistical , Genetic Association Studies , Genome, Human , Humans , Phenotype , Sample Size , Sequence Analysis, DNA
16.
PLoS Genet ; 8(2): e1002490, 2012.
Article in English | MEDLINE | ID: mdl-22359512

ABSTRACT

Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10(-204)) and 10 loci for sphingolipids (smallest P-value = 3.10×10(-57)). After a correction for multiple comparisons (P-value<2.2×10(-9)), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.


Subject(s)
Genome, Human , Genome-Wide Association Study , Phospholipids , Sphingolipids , White People/genetics , Carotid Intima-Media Thickness , Databases, Genetic , Delta-5 Fatty Acid Desaturase , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Genetic Loci , Humans , Phospholipids/blood , Phospholipids/genetics , Polymorphism, Single Nucleotide , Sphingolipids/blood , Sphingolipids/genetics
17.
PLoS Genet ; 8(5): e1002611, 2012.
Article in English | MEDLINE | ID: mdl-22570627

ABSTRACT

Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p=1.4×10(-8)), and with rs7555523, located in TMCO1 at 1q24.1 (p=1.6×10(-8)). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p=2.4×10(-2) for rs11656696 and p=9.1×10(-4) for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.


Subject(s)
Genome-Wide Association Study , Glaucoma, Open-Angle/genetics , Intraocular Pressure/genetics , Nerve Tissue Proteins/genetics , Aged , Aged, 80 and over , Case-Control Studies , Ciliary Body/metabolism , Ciliary Body/pathology , Female , Humans , Male , Middle Aged , Optic Nerve/metabolism , Optic Nerve/pathology , Polymorphism, Single Nucleotide , Trabecular Meshwork/metabolism , Trabecular Meshwork/pathology
18.
Proc Natl Acad Sci U S A ; 108(17): 7119-24, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21471458

ABSTRACT

Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 × 10(-8) to P = 4 × 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.


Subject(s)
Alcohol Drinking/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , Quantitative Trait, Heritable , White People/genetics , Alcohol Drinking/metabolism , Animals , Cytoskeletal Proteins , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation/genetics , Genome-Wide Association Study , Genotype , Humans , Male , Mice , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Proteins/metabolism , Transcription Factors
19.
Cephalalgia ; 33(4): 228-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23147163

ABSTRACT

AIM: Migraine, in particular with aura, has been associated with an increased risk for ischemic stroke and coronary heart disease. The underlying mechanism is unknown. In a cross-sectional case control study we investigated whether an enhanced risk of atherosclerosis in migraineurs explains this increased cardiovascular risk. METHODS: Subjects were participants from the population-based Erasmus Rucphen Family study. Atherosclerosis was assessed in 360 migraineurs (209 without aura and 151 with aura) and 617 subjects without migraine or severe headache. Atherosclerosis was quantified by intima media thickness, pulse wave velocity and ankle-brachial index. RESULTS: Migraineurs, especially with aura, were found more likely to smoke, have diabetes or a modestly decreased HDL-cholesterol. No differences were found for the atherosclerosis parameters. CONCLUSION: In this large population-based study, migraineurs have no increased risk of atherosclerosis. Therefore, enhanced atherosclerosis is an unlikely explanation for the increased cardiovascular risk seen in migraineurs.


Subject(s)
Atherosclerosis/complications , Atherosclerosis/epidemiology , Migraine Disorders/complications , Ankle Brachial Index , Carotid Intima-Media Thickness , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prevalence , Pulse Wave Analysis
20.
PLoS Genet ; 6(6): e1000978, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20548946

ABSTRACT

The optic nerve head is involved in many ophthalmic disorders, including common diseases such as myopia and open-angle glaucoma. Two of the most important parameters are the size of the optic disc area and the vertical cup-disc ratio (VCDR). Both are highly heritable but genetically largely undetermined. We performed a meta-analysis of genome-wide association (GWA) data to identify genetic variants associated with optic disc area and VCDR. The gene discovery included 7,360 unrelated individuals from the population-based Rotterdam Study I and Rotterdam Study II cohorts. These cohorts revealed two genome-wide significant loci for optic disc area, rs1192415 on chromosome 1p22 (p = 6.72x10(-19)) within 117 kb of the CDC7 gene and rs1900004 on chromosome 10q21.3-q22.1 (p = 2.67x10(-33)) within 10 kb of the ATOH7 gene. They revealed two genome-wide significant loci for VCDR, rs1063192 on chromosome 9p21 (p = 6.15x10(-11)) in the CDKN2B gene and rs10483727 on chromosome 14q22.3-q23 (p = 2.93x10(-10)) within 40 kbp of the SIX1 gene. Findings were replicated in two independent Dutch cohorts (Rotterdam Study III and Erasmus Rucphen Family study; N = 3,612), and the TwinsUK cohort (N = 843). Meta-analysis with the replication cohorts confirmed the four loci and revealed a third locus at 16q12.1 associated with optic disc area, and four other loci at 11q13, 13q13, 17q23 (borderline significant), and 22q12.1 for VCDR. ATOH7 was also associated with VCDR independent of optic disc area. Three of the loci were marginally associated with open-angle glaucoma. The protein pathways in which the loci of optic disc area are involved overlap with those identified for VCDR, suggesting a common genetic origin.


Subject(s)
Optic Disk/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Female , Genetic Variation , Genome-Wide Association Study , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL