Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
BMC Plant Biol ; 23(1): 579, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37981681

ABSTRACT

Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) offer a new possibility for phyto-nanotechnology and biotechnology to improve the quality and quantity of secondary metabolites in vitro. The current study aimed to determine the SWCNTs effects on Thyme (Thymus daenensis celak.) seed germination. The seedlings were further assessed in terms of morphological and phytochemical properties. Sterile seeds were cultured in vitro and treated with various concentrations of SWCNTs. Biochemical analyses were designed on seedling sample extracts for measuring antioxidant activities (AA), total flavonoids (TFC) and phenolic contents, and the main enzymes involved in oxidative reactions under experimental treatments. The results indicated that an increase in SWCNTs concentration can enhance the total percentage of seed germination. The improvement was observed in samples that received SWCNTs levels of up to 125 µg ml-1, even though seedling height and biomass accumulation decreased. Seedling growth parameters in the control samples were higher than those of grown in SWCNT-fortified media. This may have happened because of more oxidative damage as well as a rise in POD and PPO activities in tissues. Additionally, secondary metabolites and relevant enzyme activities showed that maximum amounts of TPC, TFC, AA and the highest PAL enzyme activity were detected in samples exposed to 62.5 µg ml-1 SWCNTs. Our findings reveal that SWCNTs in a concentration-dependent manner has different effects on T. daenensis morphological and phytochemical properties. Microscopic images analysis revealed that SWCNTs pierce cell walls, enter the plant cells and agglomerate in the cellular cytoplasm and cell walls. The findings provide insights into the regulatory mechanisms of SWCNTs on T. daenensis growth, germination and secondary metabolites production.


Subject(s)
Nanotubes, Carbon , Thymus Plant , Seedlings , Germination , Antioxidants , Phytochemicals
2.
Cells Tissues Organs ; 212(6): 485-498, 2023.
Article in English | MEDLINE | ID: mdl-35780769

ABSTRACT

Enamel tissue, the hardest body tissue, which covers the outside of the tooth shields the living tissue, but it erodes and disintegrates in the acidic environment of the oral cavity. On the one hand, mature enamel is cell-free and, if damaged, does not regenerate. Tooth sensitivity and decay are caused by enamel loss. On the other hand, the tissue engineering approach is challenging because of the unique structure of tooth enamel. To develop an exemplary method for dental enamel rebuilding, accurate knowledge of the structure of tooth enamel, knowing how it is created and how proteins interact in its structure, is critical. Furthermore, novel techniques in tissue engineering for using stem cells to develop enamel must be established. This article aims to discuss current attempts to regenerate enamel using synthetic materials methods, recent advances in enamel tissue engineering, and the prospects of enamel biomimetics to find unique insights into future possibilities for repairing enamel tissue, perhaps the most fascinating of all tooth tissues.


Subject(s)
Tooth , Tissue Engineering/methods , Stem Cells , Biomimetics , Dental Enamel
3.
Chem Biodivers ; 19(6): e202200025, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35621714

ABSTRACT

Several species of the genus Eucalyptus are used in many traditional medicine systems for the treatment of respiratory tract infections, colds, flu, sore throats, and bronchitis. The genus Eucalyptus (Myrtaceae) is a well-known natural source of bioactive phloroglucinols. These polyphenolic compounds bear an aromatic phenyl ring with three hydroxy groups (1,3,5-trihydroxybenzene) which have been exhibiting a variety of biological activities such as antimicrobial, anticancer, anti-allergic, anti-inflammatory, and antioxidant activities. This review summarizes the literature published from 1997 until the end of 2021 and addresses the structure diversity of phloroglucinols isolated from Eucalyptus species and their biological activities. Phloroglucinol-terpene adducts are the main class of compounds that have been reported in this genus.


Subject(s)
Eucalyptus , Myrtaceae , Eucalyptus/chemistry , Medicine, Traditional , Phloroglucinol/chemistry , Plant Extracts/chemistry
4.
Chem Biodivers ; 18(4): e2001044, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33764630

ABSTRACT

Mentha longifolia L. is well-known to be one of the most pervasive wild-growing species of the Lamiaceae family, which has extensive beneficial properties in the fields of pharmacology and biological products. In the present study, the correlation between Inter-simple sequence repeat (ISSR) markers and morpho-chemical parameters of twenty different M. longifolia accessions (MLACs) were assessed. The geographic information system (GIS) has been employed to interpret the original habitat of the accessions in Iran. ISSR analysis indicated a remarkable difference in the studied accessions, segregated them into three main groups, constructed by an unweighted pair-group method with arithmetic (UPGMA) and principal coordinate analysis (PCoA). A total of 89 bands were generated by 12 ISSR primers, among which 82 (91.97 %) of them were polymorphic. The cluster analysis based on agro-morphological data scattered MLACs into two main groups. The essential oils (EOs) were analyzed through GC/FID/MS, and four chemotypes were characterized according to the major constituents. Pulegone ranged from 0.17 to 69.50 % was the main oil constituent with the highest content. Also, HPLC-PDA was employed to identify and to quantify the phenolic compounds in the MeOH extracts of MLACs. Heatmap cluster based on phenolic compounds produced three main categories of accessions. The components identified in the extracts were rosmarinic acid, rutin, vanillic acid, ferulic acid, chlorogenic acid, caffeic acid, 3,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, and p-coumaric acid, which among them rosmarinic acid (RA) varied from 39.16 to 261.55 mg/100 g (DW) as a predominant constituent. Subsequently, multiple regression analyses between ISSR fragments and morpho-chemical data illustrated considerable relationships in the plant materials. The high variation and correlation observed in metabolic and phenotypic traits of MLACs establish an adequate source to conduct reserves conservation programs.


Subject(s)
Mentha/chemistry , Oils, Volatile/isolation & purification , Plant Extracts/isolation & purification , Cluster Analysis , Genetic Variation/genetics , Iran , Mentha/genetics , Oils, Volatile/chemistry , Phylogeny , Plant Extracts/chemistry , Plant Extracts/genetics
5.
Plant Cell Physiol ; 61(2): 403-415, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31693150

ABSTRACT

Although control of xylem ion loading is essential to confer salinity stress tolerance, specific details behind this process remain elusive. In this work, we compared the kinetics of xylem Na+ and K+ loading between two halophytes (Atriplex lentiformis and quinoa) and two glycophyte (pea and beans) species, to understand the mechanistic basis of the above process. Halophyte plants had high initial amounts of Na+ in the leaf, even when grown in the absence of the salt stress. This was matched by 7-fold higher xylem sap Na+ concentration compared with glycophyte plants. Upon salinity exposure, the xylem sap Na+ concentration increased rapidly but transiently in halophytes, while in glycophytes this increase was much delayed. Electrophysiological experiments using the microelectrode ion flux measuring technique showed that glycophyte plants tend to re-absorb Na+ back into the stele, thus reducing xylem Na+ load at the early stages of salinity exposure. The halophyte plants, however, were capable to release Na+ even in the presence of high Na+ concentrations in the xylem. The presence of hydrogen peroxide (H2O2) [mimicking NaCl stress-induced reactive oxygen species (ROS) accumulation in the root] caused a massive Na+ and Ca2+ uptake into the root stele, while triggering a substantial K+ efflux from the cytosol into apoplast in glycophyte but not halophytes species. The peak in H2O2 production was achieved faster in halophytes (30 min vs 4 h) and was attributed to the increased transcript levels of RbohE. Pharmacological data suggested that non-selective cation channels are unlikely to play a major role in ROS-mediated xylem Na+ loading.


Subject(s)
Salt Tolerance/physiology , Salt-Tolerant Plants/physiology , Xylem/physiology , Atriplex/physiology , Chenopodium quinoa/physiology , Electrophysiological Phenomena , Fabaceae/physiology , Hydrogen Peroxide/metabolism , Ions , Kinetics , Pisum sativum/physiology , Plant Leaves , Plant Roots/metabolism , Potassium , Reactive Oxygen Species , Salinity , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Sodium , Transcriptome
6.
Molecules ; 25(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481510

ABSTRACT

One of the major factors limiting the production of medicinal plants in arid and semi-arid areas is water deficit or drought stress. One-third of the land in the world is arid and semi-arid and is inhabited by nearly 4 × 108 people. Ocimum basilicum (sweet basil) is a valuable medicinal plant that is sensitive to water deficit, and water shortage negatively affects sweet basil yield and quality. Water availability in the root zone of basil could ameliorate the negative effects of water shortage. To the best of our knowledge, although the effects of hydrophilic polymers (HPs) have been studied in different agricultural crops, the effects of HP application in medicinal plants have not been previously investigated. This investigation was conducted to explore the effects on water use efficiency when using Stockosorb® (STS) and psyllium seed mucilage (PSM) as hydrophilic polymers (HPs) and the effects of these HPs on essential oil quality, quantity, and yield. The research was set up in a factorial experiment on the basis of completely randomized block design with three replications. We used two HPs, STS (industrial) and PSM (herbal), with two methods of application (mixed with soil, mixed with soil + root) at four concentrations (0%, 0.1%, 0.2%, and 0.3% (w/w)). Results showed that the STS and PSM significantly increased the dry herb yield (both shoot and root) in comparison to the control, and the improving effect was higher when these HPs were mixed with soil + root. The highest dry herb yield (6.74 and 3.68 g/plant for shoot and root, respectively) was detected in the PSM at 0.1% mixed with soil + root. There was not any significant difference in dry herb yield among PSM (0.1%), PSM (0.2%), and STS (0.2%) when mixed with soil + root. Soil application of PSM and soil + root application of STS at a concentration of 0.3% increased the Essential Oil (EO) content almost three-fold in comparison to the control (0.5% and 0.52% to 0.18% v/w, respectively). The maximum essential oil yield was recorded in plants treated with STS (0.2% in) or PSM (0.1%) by soil + root application (0.21 and 0.19 mL/plant, respectively). PSM at concentrations of 0.1% and 0.2% (mixed with soil + root) showed the highest water use efficiency (1.91 and 1.82 g dry weight (DW)/L H2O, respectively). STS mixed with soil also significantly improved water use efficiency (WUE) in comparison to the control. The application of these HPs improved the quality of sweet basil essential oil by increasing the linalool and decreasing the eugenol, epi-α-cadinol, and trans-α-bergamotene content.


Subject(s)
Ocimum basilicum/drug effects , Ocimum basilicum/metabolism , Oils, Volatile/metabolism , Plant Mucilage/pharmacology , Polymers/pharmacology , Hydrophobic and Hydrophilic Interactions , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Psyllium/pharmacology , Water/metabolism
7.
Molecules ; 24(9)2019 May 08.
Article in English | MEDLINE | ID: mdl-31072064

ABSTRACT

Safranal, the main volatile chemical of Saffron (Crocus sativus) was studied to estimate its allelopathic effects on the photosynthetic pigment chlorophyll, leaf electrolyte leakage, fresh weight, catalase (CAT), and peroxidase (POX) activity of the test plant Lettuce (Lactuca sativa). In this study, the effective concentration (EC50) of safranal on CAT was estimated to be 6.12 µg/cm3. CAT activity was inhibited in a dose-dependent manner by the increase in the safranal concentration while POX activity was increased. Moreover, Safranal caused significant physiological changes in chlorophyll content, leaf electrolyte leakage, and fresh weight of several weed species with Lolium multiflorum being the most sensitive. Furthermore, 5 µM Safranal showed significant inhibitory activity against dicotyledonous in comparison to the monocotyledons under greenhouse conditions. The inhibition of the CAT by safranal was similar to those of uncompetitive inhibitors, and therefore the decline in carbon fixation by plants might be the mechanism behind the inhibitory activity of safranal.


Subject(s)
Crocus/chemistry , Cyclohexenes/pharmacology , Lactuca/physiology , Pheromones/pharmacology , Plant Weeds/physiology , Terpenes/pharmacology , Catalase/metabolism , Catalytic Domain , Cyclohexenes/chemistry , Glutathione Peroxidase/metabolism , Lactuca/drug effects , Pigmentation/drug effects , Plant Weeds/drug effects , Plant Weeds/growth & development , Reactive Oxygen Species/metabolism , Terpenes/chemistry , Volatile Organic Compounds/pharmacology
8.
J Sci Food Agric ; 95(5): 1055-65, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-24948582

ABSTRACT

BACKGROUND: The literature abounds with the impacts of drought conditions on the concentration of non-structural compounds (NSC) in peach fruits without distinction as to the direct effect of drought on fruit metabolism and its indirect effect through dilution. Moreover, there is a need to investigate the sensitivity of the fruit composition to progressive water deficit in semi-arid conditions, as well as the origin of variations in fruit composition - not only in carbohydrates and organic acids, but also in secondary metabolites such as polyphenols. RESULTS: The increase in stress intensity resulted in smaller fruits and a reduction in yield. Drought increased fruit dry matter content, structural dry matter (SDM) content and firmness due to lower water import to fruits, although drought reduced fruit surface conductance and its transpiration. Drought significantly affected the concentrations of each NSC either through the decrease in dilution and/or modifications of their metabolism. The increase in hexoses and sorbitol concentrations of fruits grown under drought conditions resulted in an increase in the sweetness index but not near harvest. Malic acid concentration and content:SDM ratio increased as drought intensified, whereas those of citric and quinic acids decreased. Polyphenol concentration and content increased under severe drought. CONCLUSION: The increase in stress intensity strongly affected fruit mass. The concentration of total carbohydrates and organic acid at harvest increased mainly through a decrease in fruit dilution, whereas the concentrations of polyphenols were also strongly affected through an impact on their metabolism.


Subject(s)
Crops, Agricultural/growth & development , Droughts , Food Quality , Fruit/growth & development , Polyphenols/biosynthesis , Prunus persica/growth & development , Stress, Physiological , Agricultural Irrigation , Algorithms , Chemical Phenomena , Citric Acid/analysis , Citric Acid/metabolism , Crops, Agricultural/chemistry , Crops, Agricultural/metabolism , Dietary Carbohydrates/analysis , Fruit/chemistry , Fruit/metabolism , Fruit/standards , Hexoses/analysis , Hexoses/biosynthesis , Iran , Malates/analysis , Malates/metabolism , Mechanical Phenomena , Polyphenols/analysis , Prunus persica/chemistry , Prunus persica/metabolism , Quinic Acid/analysis , Quinic Acid/metabolism , Seasons , Sorbitol/analysis , Sorbitol/metabolism , Surface Properties
9.
Biol Trace Elem Res ; 201(3): 1520-1537, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35462590

ABSTRACT

In the current study, we assessed health risk posed to Iranian consumers through exposure to metals via oral consumption of coffee, tea, and herbal tea of various trademarks collected from Iran market. Level of As, Cd, Cr, Cu, Fe, Hg, Ni, and Pb in 243 samples was quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES). The metal levels in coffee samples from different trademarks of a specific country had statistically similar levels of metals; however, metal levels differed significantly among brand names form different countries. Metal levels in tea samples differed significantly between domestic and imported products, while different trademarks of similar countries did not show significant variations in this respect. Metal level in herbal tea samples did not show significant variations among different trademarks. Nevertheless, it should be highlighted that mean concentrations of metals statistically differed among different herbal tea samples. Deterministic hazard quotients (HQs) were <1.0 for all non-carcinogenic metals and total hazard index (HI) values indicated no risk; however, probabilistic assessment calculated HI values >1. In both deterministic and probabilistic scenarios, carcinogenic metals As and Ni had an estimated incremental lifetime cancer risk (ILCR) of medium level while that of Pb indicated no cancer risk. Sensitivity analysis showed that the concentration of metals had the most significant effect on non-carcinogenic and carcinogenic risks.


Subject(s)
Metals, Heavy , Teas, Herbal , Humans , Iran , Carcinogens/toxicity , Carcinogens/analysis , Teas, Herbal/analysis , Coffee/adverse effects , Lead/analysis , Risk Assessment , Tea/adverse effects , Metals, Heavy/analysis , Environmental Monitoring
10.
Curr Mol Med ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37366360

ABSTRACT

Oral cancers are prevalent in the human population, particularly in unindustrialized countries. In 90 % of oral cancers, the tumors arise from squamous cells, which is called oral squamous cell carcinoma (OSCC). Despite new treatment strategies, the morbidity and mortality rates are still high. Current treatment options including surgery, chemotherapy, and radiotherapy are not effective in the treatment of the tumor. Cell therapy with mesenchymal stem cells (MSCs) is considered one of the leading strategies in cancer treatment. However, the field of MSC therapy in OSCC is immature and ongoing studies are being conducted in experimental and pre-clinical studies. Here, we reviewed these studies to figure out whether the use of MSCs could be worthwhile in OSCC therapy or not. Both native and engineered MSCs as well as their secretome have been used in the treatment of OSCC. It seems that genetically modified MSCs or their secretome could inhibit the tumorigenesis of OSCC. However, further pre-clinical studies are required to come to a conclusion.

11.
Int J Med Mushrooms ; 14(5): 521-7, 2012.
Article in English | MEDLINE | ID: mdl-23510222

ABSTRACT

In this research the effect of sawdust, malt extract, and wheat bran on yield, biological efficiency (BE), and mycelia growth of Ganoderma lucidum was investigated. Three kinds of sawdust (beech, poplar, and hornbeam) as basal medium were mixed with two levels of wheat bran (5% and 10% w/w) and malt extract (2.5% and 5% w/w) as medium supplement for production of G. lucidum in factorial experiments on the basis of completely randomized design with three replications. The results showed that various kinds of sawdust affect fruiting body yield, BE, and mycelia growth rate significantly. The highest fruiting body yield and BE (102.58 g/kg and 12.89%, respectively) were found using hornbeam sawdust. The beech sawdust promotes the mycelia growth rate more than other sawdust. Analysis of variance showed that there is a significant interaction between the sawdust type and wheat bran, sawdust type and malt extract, and wheat bran and malt extract as far as yield and BE of G. lucidum was concerned. A final comparison of the different formulae indicated that the best combinations for high yield (142.44 g/kg) and BE (18.68%) were obtained in a combination of poplar sawdust with 5% malt extract and 10% wheat bran. The highest mycelia growth rate (10.6 mm/day) was obtained in a combination of beech sawdust with 2.5% malt extract and 10% wheat bran.


Subject(s)
Culture Media/chemistry , Reishi/growth & development , Waste Products , Dietary Fiber/analysis , Fruiting Bodies, Fungal/growth & development , Industrial Waste , Wood/chemistry
12.
Clin Exp Dent Res ; 8(5): 1040-1044, 2022 10.
Article in English | MEDLINE | ID: mdl-35719011

ABSTRACT

BACKGROUND: As effective immune modulators, Endocannabinoids may suppress the inflammatory responses in periodontitis. This study assessed the expression of cannabinoid receptors in gingiva and the impact on periodontitis. METHODS: A cross-sectional study on 20 patients with more than stage II and Grade A periodontitis and a control group consisting of 19 healthy individuals was performed. The gingival biopsies were assessed for the expression of CB1 and CB2 using the quantitative reverse transcription polymerase chain reaction, TaqMan method. RESULTS: The study sample consisted of 39 subjects, 31 females (79.5%) and 8 males (20.5%), including 20 periodontitis subjects (80% female and 20% male), and control groups (78.9% female and 21.1% male). The mean ages of cases and controls were 33.3 ± 4.7 and 35.7 ± 5.1 years, respectively. The gene expression of CB2 in periodontitis was 27.62 ± 7.96 and in healthy subjects was 78.15 ± 23.07. The CB2 was significantly lower than the control group (p = .008). In comparison, the gene expression index of CB1 in the periodontal group (9.42 ± 3.03) was higher than the control group (6.62 ± 1.13) but did not meet a significant value (p = .671). CONCLUSION: The lower expression of CB2 receptors in the periodontitis group may be due to the reduced protective effect of anti-inflammatory agents. These elements include cannabinoids and the imbalance leading to the predominance of pro-inflammatory effects. Therefore, the local effects of cannabinoids as an immunomodulator could be useful for oral inflammatory diseases such as periodontitis.


Subject(s)
Cannabinoids , Periodontitis , Adult , Cross-Sectional Studies , Endocannabinoids , Female , Humans , Male , Periodontitis/genetics , Periodontitis/pathology , Receptor, Cannabinoid, CB2 , Receptors, Cannabinoid/metabolism
13.
Foods ; 11(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36230079

ABSTRACT

Seedless barberry fruit is native small fruit in Iran. To examine the impact of various drying methods and storage on the biochemical attributes (Vitamin C, Anthocyanin, Phenol, pH, TA), color index (a*, b*, L*, ab, and Chroma), drying time, and fruit microstructure (by SEM) of seedless barberry (Berberis vulgaris var. asperma), and effective moisture diffusivity coefficient (Deff), specific energy consumption (SEC), energy efficiency (EE) of the dryers, this experiment was performed. Drying treatments include microwave (100, 170, and 270 W), oven (60 and 70 °C), cabinet (50 and 70 °C), shade, sun, and fresh samples (control) and storage 6 months after drying (in polyethylene packaging and at a temperature of 5-10 °C). Results showed minimum and maximum drying times (50 min and 696 h), were related to microwave (270 W) and shade methods, respectively. The highest color values were observed in fruits treated with control, shade and sun treatments and the lowest values were observed in cabinet (70 °C) methods. According to the SEM results, microwave significantly affected surface structure of the dried sample compared to others. The findings indicated that the use of artificial drying methods than natural methods (sun and shade) cause a more significant reduction in color indexes, while vitamin C, soluble solids, and anthocyanin were significantly maintained at a high level. Storage reduced anthocyanin content of fruits almost 12%. Moreover, it was discovered EE and SEC values varied in the range of 1.16-25.26% and 12.20-1182 MJ/kg, respectively. Deff values were higher in microwave 270 W.

14.
Food Chem Toxicol ; 170: 113493, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36326503

ABSTRACT

The current study assessed the risk posed to Iranian consumers by oral exposure to a mixture of 20 pesticides and six metals in 96 fruit juice (FJ) samples (3 batches × 4 brands × 8 types of FJs) collected from Iran market. Concentrations of metals and pesticides in FJs were quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES) and chromatography-mass spectrometry (GC-MS), respectively. The mean concentration of all pesticides was below the maximum residue limits (MRLs) set by the European Union (EU). The calculated target hazard quotients (THQs) and total hazard index (HI) were <1.0 for all pesticides residue, indicating no risk. For the carcinogenic metals (As, Ni, and Pb), estimated incremental lifetime cancer risks (ILCRs) at the 50th and 95th centiles were respectively 4.25 × 10-5 and 5.30 × 10-5 (for As), 2.85 × 10-5 and 3.71 × 10-5 (for Ni), and 2.84 × 10-8, and 3.97 × 10-8 (for Pb), indicating no risk. At the 50th and 95th centiles, HI for non-carcinogenic metals (Cd, Hg, and Cr) was <1.0, indicating no risk. Based on sensitivity analyses of the input variables, the concentration of metals and pesticides, and the FJs ingestion rate had significant influential impacts on the calculated THQ and HI.


Subject(s)
Metals, Heavy , Pesticides , Metals, Heavy/toxicity , Metals, Heavy/analysis , Iran , Fruit and Vegetable Juices/analysis , Pesticides/toxicity , Pesticides/analysis , Lead/analysis , Risk Assessment , Environmental Monitoring
15.
Environ Sci Pollut Res Int ; 28(29): 39723-39741, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33759105

ABSTRACT

In the present study, levels of 22 pesticides, eight metals, and 16 polycyclic aromatic hydrocarbons (PAHs) in 1800 Iranian olive samples (20 cultivars from six different cultivation zones), were determined; then, health risk posed by oral consumption of the olive samples to Iranian consumers was assessed. Quantification of PAHs and pesticides was done by chromatography-mass spectrometry (GC-MS), and metal levels were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). There were no significant differences among the cultivars and zones in terms of the levels of the tested compounds. Target hazard quotients (THQ) were <1.0 for all pesticides, and total hazard indices (HI) indicated di minimis risk. At the 25th or 95th centiles, Incremental Life Time Cancer Risks (ILCRs) for carcinogenic elements, arsenic, and lead and noncarcinogenic metals did not exhibit a significant hazard (HI <1.0 for both cases). At the 25th or 95th centiles, ILCR and margins of exposure (MoE) for PAHs indicated di minimis risk. Sensitivity analysis showed that concentrations of contaminants had the most significant effect on carcinogenic and noncarcinogenic risks.


Subject(s)
Olea , Pesticides , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring , Iran , Pesticides/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment
16.
Food Sci Nutr ; 9(6): 2908-2914, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136158

ABSTRACT

To assist the development of new therapeutic strategies for several disorders, biologically active peptides/proteins obtained from plant sources can be considered. Current study expected to determine the biological activities of peptide fractions of Mucuna pruriens against hepatocellular carcinoma cell lines (HepG2/ADM, HepG2, SMMC-7721, and QGY-7703), as well as normal cell line to prove their selectivity. Moreover, anti-genotoxicity and antiviral activity against the hepatitis C virus (HCV) were assessed. The methods of this study were to isolate the peptides of M. pruriens and hydrolysate fractionation via fractionated pepsin-pancreatin hydrolysates by ultrafiltration/high-performance ultrafiltration cell, identify anti-hepatoma activity of peptide fractions human liver cancer and normal cells by (3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide) (MTT) assay, determine anti-HCV, and assess anti-genotoxic effect of peptide fractions against damage that induced via alkylating agent methyl methanesulphonate in human mononuclear cells. The results showed that the fraction 5-10 kDa has been reported to exhibit significant cytotoxic activity against HepG2 and QGY-7703. It was proven that both of 5-10 and >10 kDa fractions are active against HCV. The cytotoxic concentration (CC50) of 5-10 kDa against the cell line was 703.04 ± 5.21 µg/ml. Anti-genotoxic activities of the peptide fractions were evaluated as mean values for the analyzed comet images. In this regard, the highest activity of protecting DNA damages was observed by the peptide fraction of 5-10 kDa. This study revealed the potential ability of peptide fractions of M. pruriens for the treatment of liver cancer, HCV, and high activities of protecting DNA damages.

17.
Iran J Public Health ; 50(8): 1668-1677, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34917538

ABSTRACT

BACKGROUND: Mosquito species are highly considering as disease transmission as well as nuisance insects. One of the principal strategy to protect human from the mosquito bites is repellent agents. This study aimed to assess repellency of two organic essential oils, Eucalyptus globulus and Syzygium aromaticum from bites of malaria vector, Anopheles stephensi. METHODS: The study was conducted in 2019-2020. The components of essential oils of E. globulus and S. aromaticum was determined using gas chromatography/mass spectrometry. The unfed female mosquitoes aged 2-5 d old were used in all experiments. In vivo Klun and Debboun module bioassays were utilized on human-volunteer skin. The essential oils at serial concentrations were used to find repellent efficacy against Anopheles landings and bites. To find the synergistic effect, four combinations of the essential oils were tested. RESULTS: The main composition of E. globulus essential oil was 1,8-Cineol (78.20%), whereas that of S. aromaticum essential oil was 2-methoxy-3-(2-propenyl) (77.04%). Based on minimum effective dose (≤1% biting), 10% (v/v) of E. globulus showed high landing repellency (77.78%), whereas minimum effective dose of S. aromaticum at concentration of 1% had high landing repellency (88.89%). Among four combinations, the ratio of 1:1 of E. globulus (10%):S. aromaticum (1%) showed the most landing repellency (94.44%). CONCLUSION: The combinations of two essential oils had the most potential repellency effect against landing of mosquitoes. As essential oils are eco-friendly with less irritation for human skin, E. globulus and S. aromaticum essential oils are recommended as effective and safe mosquito repellents.

18.
Plants (Basel) ; 10(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34371573

ABSTRACT

Vegetative and reproductive characteristics, fruit yield, and biochemical compounds of six bitter melon cultivars (Iranshahr, Mestisa, No. 486, Local Japanese, Isfahan, and Ilocano) were evaluated under Karaj conditions in Iran. The phytochemical properties of the cultivars were evaluated using both shade-dried and freeze-dried samples at three fruit developmental stages (unripe, semi-ripe, and ripe). There were significant differences in the vegetative and reproductive characteristics among cultivars, where cv. No. 486 was superior to most vegetative attributes. The fruit yield of cultivars varied from 2.98-5.22 kg/plant. The number of days to male and female flower appearance ranged from 19.00-25.33 and from 25-33 days, respectively. The leaf charantin content was in the range of 4.83-11.08 µg/g. Fruit charantin content varied with developmental stage, drying method, and cultivar. The highest charantin content (13.84 ± 3.55 µg/g) was observed at the semi-ripe fruit stage, and it was much higher in the freeze-dried samples than the shade-dried samples. Cultivar No. 486 had the highest (15.43 ± 2.4 µg/g) charantin content, whereas the lowest charantin content (8.51 ± 1.15 µg/g) was recorded in cultivar cv. Local Japanese. The highest total phenol content (25.17 ± 2.27 mg GAE/g) was recorded in freeze-dried samples of ripe fruits of cv. No. 486, whereas the lowest phenol content was detected in the shade-dried samples of semi-ripe fruits of Isfahan. cv. Flavonoid content was higher with the shade-drying method, irrespective of cultivar. In conclusion, considering the fruit yield and active biological compounds in the studied cultivars, cv. No. 486 should be grown commercially because of its higher yield and production of other secondary metabolites.

19.
Turk J Orthod ; 33(1): 13-20, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32284894

ABSTRACT

OBJECTIVE: Owing to the increasing demand from orthodontic patients for a more rapid treatment, many studies have focused on accelerated tooth movement. Currently, one of the prevalent methods to achieve accelerated tooth movement is piezo-puncture. The aim of the present study was to evaluate the effect of a modified piezo-puncture method on tooth movement rate and type during canine retraction. METHODS: A total of 17 patients who required fixed orthodontic treatment with extraction of the maxillary first premolars were included in the study. Following a split-mouth design, upper canines were retracted with Ni-Ti coil spring that applied 150 g of force on each side (piezo-puncture on one side and contralateral side served as the control). Then, the rates of tooth movement, canine angulation and rotation, and anchorage loss were evaluated at T0 (before the intervention), T1 (1 month after the intervention), and T2 (2 months after the intervention). For calculating the canine movement rate, either the distance between the canine and the lateral incisor or the space between the second premolar and the canine was measured. In addition, pain perception was documented by Visual Analog Scale. Data were analyzed using the Kolmogorov-Smirnov normality test, Spearman correlation test, paired sample t-test, and Wilcoxon signed-rank test. RESULTS: No significant acceleration was observed in canine movement, canine tipping, rotation, or anchorage loss of molar in different times. CONCLUSION: Considering the limitations of the study, the application of piezo-puncture employing the protocol used in the present study failed to accelerate tooth movement and to decrease the unfavorable tipping, rotation, and molar anchorage loss.

20.
Bioresour Technol ; 314: 123752, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32629377

ABSTRACT

Two common strategies to feed the CO2 are pH steady (PS) and CO2 steady (CS). An innovative strategy called ''CSBPS (CS feeding based on PS data)" in comparison to the 0.04% CS, 5% CS, and PS approaches improved the Haematococcus pluvialis growth and carbon bio-sequestration. The optimum concentration of CO2 was estimated based on the PS cultivation data and fed to culture media using the CS approach with no buffering agent. The biomass productivity, CO2 bio-fixation rate, and rubisco activity under CSBPS strategy were 127, 121, and 65% higher than 0.04% CS strategy, respectively. The DIC concentration 177-230 (mg/L) and C/N ratio 0.48-0.76 were found promising for cell growth through increasing the rubisco activities under CSBPS strategy by 65, 54 and, 4% higher than 0.04% CS, 5% CS and PS strategies, respectively. The presented strategy provides a promising eco-friendly approach to reduce the CO2 losses and the production cost.


Subject(s)
Chlorophyta , Biomass , Carbon , Carbon Dioxide , Hydrogen-Ion Concentration , Light , Xanthophylls
SELECTION OF CITATIONS
SEARCH DETAIL