Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Molecules ; 28(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37513307

ABSTRACT

The goal of an antiviral agent research is to find an antiviral drug that reduces viral growth without harming healthy cells. Transformations of the virus, new viral strain developments, the resistance of viral pathogens, and side effects are the current challenges in terms of discovering antiviral drugs. The time has come and it is now essential to discover a natural antiviral agent that has the potential to destroy viruses without causing resistance or other unintended side effects. The pharmacological potency of thymoquinone (TQ) against different communicable and non-communicable diseases has been proven by various studies, and TQ is considered to be a safe antiviral substitute. Adjunctive immunomodulatory effects in addition to the antiviral potency of TQ makes it a major compound against viral infection through modulating the production of nitric oxide and reactive oxygen species, decreasing the cytokine storm, and inhibiting endothelial dysfunction. Nevertheless, TQ's low oral bioavailability, short half-life, poor water solubility, and conventional formulation are barriers to achieving its optimal pharmacologic benefits. Nano-formulation proposes numerous ways to overcome these obstacles through a small particle size, a big surface area, and a variety of surface modifications. Nano-based pharmaceutical innovations to combat viral infections using TQ are a promising approach to treating surmounting viral infections.


Subject(s)
Antiviral Agents , Benzoquinones , Antiviral Agents/pharmacology , Benzoquinones/pharmacology , Solubility , Particle Size
2.
AAPS PharmSciTech ; 24(5): 130, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291443

ABSTRACT

Chemotherapy of multi-drug-resistant tuberculosis (TB) requires prolonged administration of multiple drugs. We investigated whether pulmonary delivery of minute doses of drugs, along with reduced oral doses of the same agents, would affect preclinical efficacy. We prepared dry powder inhalation (DPI) formulations comprising sutezolid (SUT), the second-generation pretomanid analog TBA-354 (TBA), or a fluorinated derivative of TBA-354 (32,625) in a matrix of the biodegradable polymer poly(L-lactide). We established formulation characteristics, doses inhaled by healthy mice, and preclinical efficacy in a mouse model of TB. Oral doses of 100 mg/kg/day or DPI doses of 0.25-0.5 mg/kg/day of drugs SUT, TBA-354, or 32,625 administered over 28 days were sub-optimally effective in reducing lung and spleen burden of Mycobacterium tuberculosis (Mtb) in infected mice. The addition of 0.25-0.5 mg/kg/day of SUT, TBA-354, or 32,625 as DPI to oral doses of 50 mg/kg/day was non-inferior in clearing Mtb from the lungs of infected mice. We concluded that adjunct therapy with inhaled second-line agents has the potential to reduce the efficacious oral dose.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Animals , Mice , Antitubercular Agents , Pharmaceutical Preparations , Drug Tapering , Tuberculosis, Multidrug-Resistant/drug therapy , Administration, Inhalation , Powders
3.
Pharm Res ; 39(10): 2621-2633, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962268

ABSTRACT

BACKGROUND: It is unclear whether Vitamin D is efficacious as a host-directed therapy (HDT) for patients of tuberculosis (TB). We investigated pulmonary delivery of the active metabolite of Vitamin D3, i.e., 1, 25-dihydroxy vitamin D3 (calcitriol) in a mouse model of infection with Mycobacterium tuberculosis (Mtb). METHODS: We optimized a spray drying process to prepare a dry powder inhalation (DPI) of calcitriol using a Quality by Design (QbD) approach. We then compared outcomes when Mtb-infected mice were treated with inhaled calcitriol at 5 ng/kg as a stand-alone intervention versus DPI as adjunct to standard oral anti-tuberculosis therapy (ATT). RESULTS: The DPI with or without concomitant ATT markedly improved the morphology of the lungs and mitigated histopathology in both the lungs and the spleens. The number of nodular lesions on the lung surface decreased from 43.7 ± 3.1 to 22.5 ± 3.9 with the DPI alone and to 9.8 ± 2.5 with DPI + ATT. However, no statistically significant induction of host antimicrobial peptide cathelicidin or reduction in bacterial burden was seen with the DPI alone. DPI + ATT did not significantly reduce the bacterial burden in the lungs compared to ATT alone. CONCLUSIONS: We concluded that HDT using the low dose calcitriol DPI contributed markedly to mitigation of pathology, but higher dose may be required to evoke significant induction of bactericidal host response and bactericidal activity in the lung.


Subject(s)
Calcitriol , Tuberculosis , Administration, Inhalation , Animals , Antitubercular Agents/pharmacology , Calcitriol/pharmacology , Dry Powder Inhalers , Mice , Powders , Tuberculosis/drug therapy
4.
Int J Mol Sci ; 23(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36232989

ABSTRACT

Brain metastasis is one of the major reasons of death in breast cancer (BC) patients, significantly affecting the quality of life, physical activity, and interdependence on several individuals. There is no clear evidence in scientific literature that depicts an exact mechanism relating to brain metastasis in BC patients. The tendency to develop breast cancer brain metastases (BCBMs) differs by the BC subtype, varying from almost half with triple-negative breast cancer (TNBC) (HER2- ER- PR-), one-third with HER2+ (human epidermal growth factor receptor 2-positive, and around one-tenth with luminal subclass (ER+ (estrogen positive) or PR+ (progesterone positive)) breast cancer. This review focuses on the molecular pathways as possible therapeutic targets of BCBMs and their potent drugs under different stages of clinical trial. In view of increased numbers of clinical trials and systemic studies, the scientific community is hopeful of unraveling the underlying mechanisms of BCBMs that will help in designing an effective treatment regimen with multiple molecular targets.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Triple Negative Breast Neoplasms , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Breast Neoplasms/metabolism , Estrogens , Female , Humans , Progesterone , Quality of Life , Receptor, ErbB-2/metabolism , Receptors, Progesterone/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
5.
Phytother Res ; 35(5): 2487-2499, 2021 May.
Article in English | MEDLINE | ID: mdl-33587320

ABSTRACT

The development and spread of resistance to antimicrobial drugs is hampering the management of microbial infectious and wound healing processes. Curcumin is the most active and effective constituent of Curcuma longa L., also known as turmeric, and has a very long and strong history of medicinal value for human health and skincare. Curcumin has been proposed as strong antimicrobial potentialities and many attempts have been made to determine its ability to conjointly control bacterial growth and promote wound healing. However, low aqueous solubility, poor tissue absorption and short plasma half-life due its rapid metabolism needs to be solved for made curcumin formulations as suitable treatment for wound healing. New curcumin nanoformulations have been designed to solve the low bioavailability problem of curcumin. Thus, in the present review, the therapeutic applications of curcumin nanoformulations for antimicrobial and wound healing purposes is described.

6.
Phytother Res ; 34(2): 315-328, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31713286

ABSTRACT

Convolvulus genus is a representative of the family of Convolvulaceae. Convolvulus plants are broadly distributed all over the world and has been used for many centuries as herbal medicine. Convolvulus genus contains various phytochemicals such as flavonoids, alkaloids, carbohydrates, phenolic compounds, mucilage, unsaturated sterols or terpenes, resin, tannins, lactones, and proteins. This review highlights the phytochemical composition, antimicrobial and antioxidant activities, application as food preservative, traditional medicine use, anticancer activities, and clinical effectiveness in human of Convolvulus plants. All the parts of Convolvulus plants possess therapeutic benefits; preliminary pharmacological data validated their use in traditional medicine. However, further preclinical and clinical experiments are warranted before any application in human health.


Subject(s)
Convolvulus/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Anti-Infective Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Convolvulus/classification , Food Preservatives , Humans , Medicine, Traditional , Phytotherapy , Plants, Medicinal/classification
7.
Saudi Pharm J ; 28(4): 519-527, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273813

ABSTRACT

Alcoholic liver disease (ALD) is a broad-spectrum disorder, covering fatty liver, cirrhosis, alcoholic hepatitis and in extreme untreated condition hepatocellular carcinoma (HCC) may also develop. Cladonia rangiferina (CR) is a class of lichen having a broad spectrum of pharmacological activity. It is used like traditional natural sources in ancient times in India, China, Sri Lanka, etc. Folkloric record about CR has reported their use as an antimicrobial, antitumor, antioxidant, anti-inflammatory activities, etc. Hence, the present study was requested to ascertain the effect of the ethanolic extract of Cladonia rangiferina (CRE) on alcohol-induced hepatotoxicity. The animals were evaluated for the estimation of the liver in vivo biochemical antioxidant parameters. The liver tissues were further evaluated histopathologically and western blotting examination for localization of apoptotic gene expression that plays a pivotal role in hepatotoxicity. The results of this study reveal that CRE proves to be helpful in the treatment of alcohol-induced hepatotoxicity and oxidative stress. Results of different markers have shown that among all, CRE has demonstrated the best hepatoprotective activity. These observations say about the importance of the components of the extract. The ameliorative action of CRE in alcoholic liver damage may exist due to antioxidant, anti-inflammatory, and anti-apoptotic activities.

8.
Saudi Pharm J ; 27(8): 1210-1215, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31885481

ABSTRACT

TRADITIONAL PERTINENCE: Argyreia speciosa Sweet (Linn.), belongs to the family convolvulaceae, a traditional Indian medicinal herb, has been used to treat acute/chronic ulcers, gonorrhea, rheumatoid arthritis and several nervous disorders having a long history. AIM OF THE STUDY: A broad spectrum approach of this work was to find out the antioxidant activity of Argyreia speciosa seeds, in vitro and in vivo antioxidant assay were performed. MATERIAL AND METHODS: Total phenolic content (TPC), reducing power (RP), antioxidant activity (AOA), O 2 · - (superoxide anion), DPPH (1,1-diphenyl-2-picrylhydrazyl) and ˙OH (hydroxyl) radicals scavenging activities, GSH (glutathione), CAT (catalase), SOD (superoxide dismutase) and LPO (lipid peroxidase) are the major parameters which were studied for determining in vitro and in vivo antioxidant property of seed extract & their six fractions obtained from A. speciosa. Carbon tetrachloride (CCl4) induced rat model was used to determine in vivo antioxidant assay of extract and its fractions. RESULTS: Butanol fraction (AS-BF) showed strong antioxidant property and protected oxidative DNA damage. AS-BF was found best as compared to all other fraction for determining antioxidant property of seeds with the reduction in lipid peroxide formation and increment in GSH, CAT and SOD. AS-BF showed the presence of phenolic compounds viz. gallic acid, chlorogenic acid, and ellagic acid. CONCLUSION: From these results, it was proved that A. speciosa seeds prevent tissue damage due to oxidative stress with strong antioxidant activity.

9.
Saudi Pharm J ; 27(4): 532-539, 2019 May.
Article in English | MEDLINE | ID: mdl-31061622

ABSTRACT

Wound healing is a complex process in which injured skin and tissues repaired by interaction of a complex cascade of cellular events that generates resurfacing, reconstitution and restoration of the tensile strength of injured skin. It follows ß-catenin, extracellular signal regulated kinase (ERK) and Akt signaling pathways. Aegle marmelos L., generally known as bael is found to act as anti-inflammatory, antioxidant and anti-ulcer agent. Furthermore, studies have demonstrated that this Indian traditional medicinal plant, A. marmelos flower extract (AMF) was used for wound injury. Henceforth, the current study was investigated to ascertain the effect of its active constituents in vitro wound healing with mechanism involve in migration of cells and activation of ß-catenin in keratinocytes, inhibition of PGE2 in macrophages and production of collagen in fibroblasts. We have taken full thickness wound of rats and applied AMF for 2 weeks. Cutaneous wound healing activity was performed using HaCaT keratinocytes, Hs68 dermal fibroblasts and RAW264.7 macrophages to determine cell viability, nitric oxide production, collagen expression, cell migration and ß-catenin activation. Results shows that AMF treated rats demonstrated reduced wound size and epithelisation was improved, involved in keratinocytes migration by regulation of Akt signaling, beta-catenin and extracellular signal-regulated kinase (ERK) pathways. AMF and its active constituent's increased mRNA expression, inhibited nitric oxide, PGE2 release, mRNA expression of mediators in RAW 264.7 macrophages and enhances the motility of HaCaT keratinocytes in vitro wound healing of rats.

11.
Microbes Infect ; 26(3): 105282, 2024.
Article in English | MEDLINE | ID: mdl-38135025

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection leads to upregulation of Suppressors of Cytokine signaling (SOCS) expression in host macrophages (Mϕ). SOCS proteins inhibit cytokine signaling by negatively regulating JAK/STAT. We investigated this host-pathogen dialectic at the level of transcription. We used phorbol-differentiated THP-1 Mϕ infected with Mtb to investigate preferential upregulation of some SOCS isoforms that are known to inhibit signaling by IFN-γ, IL-12, and IL-6. We examined time kinetics of likely transcription factors and signaling molecules upstream of SOCS transcription, and survival of intracellular Mtb following SOCS upregulation. Our results suggest a plausible mechanism that involves PGE2 secretion during infection to induce the PKA/CREB axis, culminating in nuclear translocation of C/EBPß to induce expression of SOCS1. Mtb-infected Mϕ secreted IL-10, suggesting a mechanism of induction of STAT3, which may subsequently induce SOCS3. We provide evidence of temporal variation in SOCS isoform exspression and decay. Small-interfering RNA-mediated knockdown of SOCS1 and SOCS3 restored the pro-inflammatory milieu and reduced Mtb viability. In mice infected with Mtb, SOCS isoforms persisted across Days 28-85 post infection. Our results suggest that differential temporal regulation of SOCS isoforms by Mtb drives the host immune response towards a phenotype that facilitates the pathogen's survival.


Subject(s)
Mycobacterium tuberculosis , Humans , Animals , Mice , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Macrophages/microbiology , Interleukin-12 , Protein Isoforms/metabolism
12.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36903746

ABSTRACT

Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.

13.
Tuberculosis (Edinb) ; 134: 102198, 2022 05.
Article in English | MEDLINE | ID: mdl-35344918

ABSTRACT

Transient transfection of the respiratory mucosa of mice infected with Mycobacterium tuberculosis (Mtb) with gamma interferon (IFN-γ) promises benefits in disease therapy. We investigated preclinical efficacy of a dry powder inhalation (DPI) as a stand-alone versus adjunct to oral anti-tuberculosis (TB) chemotherapy in mice. We observed that this host-directed therapy mitigates the gross organ pathology and histopathology of lung and spleen tissue of infected mice receiving the DPI, either alone or as adjunct therapy. However, no statistically significant reduction in Mtb colony forming units (CFU) occurred if mice were given only DPI; but not drugs. We compared one and three doses a week of the DPI over four weeks; with or without concomitant oral drugs. There was no significant difference in lung CFU after four or 12 doses of the DPI alone, but, surprisingly, four doses were qualitatively better than 12 doses in mitigating lung pathology. Nodular lesions on the lung surface and the area occupied by these was significantly reduced after four doses of the DPI, even without oral drugs. Transient transfection with IFN-γ did not induce pathological inflammation of the lungs and airways. We conclude that IFN-γ, as expected of host-directed therapy, 'heals the host; ' but does not 'kill the bug.'


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/therapeutic use , Disease Models, Animal , Genetic Therapy , Interferon-gamma/genetics , Lung/microbiology , Mice , Tuberculosis/drug therapy , Tuberculosis/microbiology
14.
Article in English | MEDLINE | ID: mdl-35251206

ABSTRACT

Urtica dioica belongs to the Urticaceae family and is found in many countries around the world. This plant contains a broad range of phytochemicals, such as phenolic compounds, sterols, fatty acids, alkaloids, terpenoids, flavonoids, and lignans, that have been widely reported for their excellent pharmacological activities, including antiviral, antimicrobial, antihelmintic, anticancer, nephroprotective, hepatoprotective, cardioprotective, antiarthritis, antidiabetic, antiendometriosis, antioxidant, anti-inflammatory, and antiaging effects. In this regard, this review highlights fresh insight into the medicinal use, chemical composition, pharmacological properties, and safety profile of U. dioica to guide future works to thoroughly estimate their clinical value.

15.
Curr Pharm Des ; 27(13): 1579-1587, 2021.
Article in English | MEDLINE | ID: mdl-33155905

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has changed the global scenario. To date, there are no treatment or preventive options. The discovery of a new drug will take time. In addition, the new drug will have side effects, and the virus will gradually become resistant to it. Therefore, it is important to search for a drug with a natural origin. OBJECTIVE: In this review, we analyzed and summarized various ethnomedicinal plants and their bioactive compounds as a source of antiviral agents for COVID-19 prevention and treatment. METHODS: From the literature, we selected different natural compounds that can act as potential targets at low cost with broad-spectrum antiviral activity. RESULTS: Of the 200 Chinese herbal extracts tested for their possible role against SARS-CoV, Lycoris radiata, Artemisia annua, Pyrrosia lingua, and Lindera aggregate showed anti-SARS-CoV effects with the median effective concentration = 2.4-88.2 µg/mL. CONCLUSION: Ethnomedicinal herbs can be used as an alternative source of novel, promising antiviral agents that might directly or indirectly inhibit the COVID-19 progression.


Subject(s)
COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2
16.
J Ayurveda Integr Med ; 10(3): 171-177, 2019.
Article in English | MEDLINE | ID: mdl-29395895

ABSTRACT

BACKGROUND: Reindeer lichen, Lichen rangiferinus syn. or Cladonia rangiferina (L.) F. H. Wigg. (Cladoniaceae) has been traditionally reported as a remedy to treat fever, colds, arthritis as well as convulsions, liver infections, coughs, constipation, and tuberculosis. The current study is aimed at rectification of alcohol induced liver damage by the use of L. rangiferinus extract. OBJECTIVES: The aim of the study was to compare some biochemical markers for liver injury and hematological indices in normal untreated rats and treated rats. MATERIAL AND METHODS: The study was performed using male Wistar rats. Animals were categorized into five groups, negative control group (normal diet only), treated groups (2 groups were lichen treated along with 10% ethanol & 1 group was only ethanol treated) and positive control group (Silymarin+10% ethanol) of six animals in each group. Biochemical markers for liver injury and hematological indices of all animals were measured using standard diagnostic tools. The animals were then sacrificed and livers were sent to the pathology lab for histopathological analysis. RESULTS: Lichen extract showed a significant restoration of altered biochemical parameters towards normal in both in vitro and in vivo conditions. The total phenolic and flavonoid content of the LRE was found to be 21.78 µg PE/mg of extract and 5.13 µg RE/mg of extract respectively. The IC50 values for atranorin and fumarprotocetraric acid were found to be 128.48 and 218.46 mg/mL respectively. Reducing power of the extract was found to be quite significant. After administration of lichen extract, endothelial cells were less injured around central vein and number of fat vacuoles was also lesser in hepatocytes. CONCLUSION: Conclusively, treatment with lichen extract assuages alcohol-related damage and guards hepatic tissue from alcohol-induced toxicity.

17.
Life Sci ; 213: 174-182, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30326221

ABSTRACT

AIMS: Ritonavir (RIT) is a human immune deficiency virus (HIV) protease inhibitor (PI) active against HIV-1 and HIV-2. Among various adverse effects of PIs, hepatotoxicity is a very common adverse reaction of RIT which is concentration dependent. Red clover isoflavones are found to possess anti-inflammatory, antioxidant and anti-apoptosis activity. Furthermore, recent studies have demonstrated that these isoflavones can be used to alleviate the side-effects of drugs. Hence, the present study was inquested to ascertain the effect of Formononetin (FMN) and Biochanin A (BCA) on RIT induced hepatotoxicity. MAIN METHODS: Five groups of animals were subjected to treatment as control, toxic control (RIT), third group (RIT + FMN), fourth group (RIT + BCA), the fifth group (RIT + FMN + BCA) and sixth group (FMN + BCA) for 14 days. The animals were evaluated for estimation of liver toxicity markers, inflammatory biomarkers, in-vivo biochemical antioxidant parameters. The liver tissues were further evaluated histopathologically and western blotting examination for localization of apoptotic gene expression that plays a pivotal role in hepatotoxicity. KEY FINDINGS: FMN and BCA ameliorated the increased levels of biochemical markers of liver, attenuated the RIT induced Bax, caspase-3, NFκB and eNOS activation and persuaded the Bcl2 and pAkt level. Alteration in the levels of inflammatory markers was also observed in both hepatic tissue and serum. SIGNIFICANCE: FMN and BCA exerts hepatoprotective effect through modulating the oxidative stress, inflammation, apoptosis and reversing the tissue degeneration suggesting its therapeutic role in hepatotoxicity and other hepatocellular diseases.


Subject(s)
Genistein/pharmacology , Isoflavones/pharmacology , Liver/metabolism , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Genistein/metabolism , Isoflavones/metabolism , Liver/drug effects , Liver Diseases/metabolism , Male , NF-kappa B/metabolism , Oxidative Stress/drug effects , Protective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Ritonavir/adverse effects
18.
Pharmacogn Mag ; 13(Suppl 1): S127-S134, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28479737

ABSTRACT

BACKGROUND: Euphorbia hirta possesses antibacterial, anti-inflammatory, galactogenic, antidiarrheal, antioxidant, hypoglycemic, antiasthmatic, antiamebic, antifungal, and antimalarial activities. OBJECTIVE: The overall objective of the current study was the investigation of the whole plant extract of E. hirta and flavonoids from E. hirta on gastroesophageal reflux disease (GERD) in rats. MATERIALS AND METHODS: The whole plant extract of E. hirta was characterized by analysis of flavonoids (HPLC: HPLC, UV, IR, MS and 1HNMR). GERD model was induced surgically in Wistar rats under pentobarbitone sodium anesthesia (50 mg/kg, i.p.) and the tissue esophagus and stomach were removed. The tissues were washed with physiological saline and were examined for GERD. The whole plant extract of E. hirta in doses of 50, 100, and 200 mg/kg were administered orally twice daily at 10:00 and 16:00 hours, respectively, for 5 days and kaempferol (100 mg/kg) or omeprazole (OMZ) in the dose of 30 mg/kg 1 hour prior to the induction of GERD. Control groups received suspension of 1% carboxymethyl cellulose in distilled water (10 mL/kg). RESULTS: The levels of gastric wall mucus increased and of plasma histamine and H+, K+ ATPase significantly decreased in groups treated by both the plant extract and flavonoids. Both the plant extract and flavonoids reduced the lipid peroxidation and superoxide dismutase and increased the levels of catalase and reduced glutathione. CONCLUSIONS: The whole plant extract of E. hirta is attributed to its antisecretory, gastroprotective, and antioxidant potential as that of quercetin, rutin, kaempferol, and proton pump blocker (omeprazole) to treat GERD. SUMMARY: The aqueous extract of whole plant of Euphorbia hirta revealed the presence of kaempferol (0.0256%), quercetin (0.0557%), and rutin (0.0151%), and the ethyl acetate fraction of whole plant of E. hirta possesses kaempferol (0.0487%), quercetin (0.0789%), and rutin (0.0184%).The levels of gastric wall mucus increased and of plasma histamine and H+-K+-ATPase significantly decreased in rats groups treated by both the whole plant extract of E. hirta and flavonoids.Both the whole plant extract of E. hirta and flavonoids reduced the lipid peroxidation and superoxide dismutase and increased the levels of catalase and reduced glutathione in rats groups. Abbreviation used: 1HNMR: Proton Nuclear Magnetic Resonance Spectroscopy, CAT: Catalase, EHAE: Aqueous extract of Euphorbia hirta, EHEF: Ethyl Acetate Fractions of Euphorbia hirta, GERD: Gastroesophageal reflux disease, GSH: Reduced Glutathione, HPLC: High performance liquid chromatography, IR: Infrared spectroscopy, LPO: Lipid Peroxidase, MDA: Malondialdehyde, MS: Mass Spectroscopy, OMZ: Omeprazole, ROS: Reactive Oxygen Species, SOD: Superoxide dismutase, TBHQ: tert-Butylhydroquinone, TLC: Thin Layer Chromatography, UV: Ultraviolet, UV: Ultraviolet-Visible Spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL