Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Glia ; 67(8): 1510-1525, 2019 08.
Article in English | MEDLINE | ID: mdl-31038798

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.


Subject(s)
Aging/physiology , Mesenchymal Stem Cells/physiology , Oligodendroglia/physiology , Remyelination/physiology , Animals , Cells, Cultured , Demyelinating Diseases/physiopathology , Disease Models, Animal , Female , Male , Rats, Inbred F344 , Rats, Sprague-Dawley , Tissue Culture Techniques
2.
Biol Res ; 45(3): 231-42, 2012.
Article in English | MEDLINE | ID: mdl-23283433

ABSTRACT

Most cells of the developing mammalian brain derive from the ventricular (VZ) and the subventricular (SVZ) zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs) while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs). Evidence from human and animal models indicates that the common history of hydrocephalus and brain maldevelopment starts early in embryonic life with disruption of the VZ and SVZ. We propose that a "cell junction pathology" involving adherent and gap junctions is a final common outcome of a wide range of gene mutations resulting in proteins abnormally expressed by the VZ cells undergoing disruption. Disruption of the VZ during fetal development implies the loss of NSCs whereas VZ disruption during the perinatal period implies the loss of ependyma. The process of disruption occurs in specific regions of the ventricular system and at specific stages of brain development. This explains why only certain brain structures have an abnormal development, which in turn results in a specific neurological impairment of the newborn. Disruption of the VZ of the Sylvian aqueduct (SA) leads to aqueductal stenosis and hydrocephalus, while disruption of the VZ of telencephalon impairs neurogenesis. We are currently investigating whether grafting of NSCs/neurospheres from normal rats into the CSF of hydrocephalic mutants helps to diminish/repair the outcomes of VZ disruption.


Subject(s)
Hydrocephalus/therapy , Intercellular Junctions/pathology , Neural Stem Cells/pathology , Stem Cell Transplantation/methods , Animals , Cell Differentiation , Cell Proliferation , Cerebral Aqueduct/pathology , Cerebral Ventricles/embryology , Cerebral Ventricles/pathology , Humans , Hydrocephalus/pathology , Neural Stem Cells/transplantation , Neurogenesis , Rats
3.
Front Cell Neurosci ; 13: 85, 2019.
Article in English | MEDLINE | ID: mdl-30971893

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Upon demyelination, oligodendrocyte progenitor cells (OPCs) are activated and they proliferate, migrate and differentiate into myelin-producing oligodendrocytes. Besides OPCs, neural stem cells (NSCs) may respond to demyelination and generate oligodendrocytes. We have recently shown that CNS-resident pericytes (PCs) respond to demyelination, proliferate and secrete Laminin alpha2 (Lama2) that, in turn, enhances OPC differentiation. Here, we aimed to evaluate whether PCs influence the fate choice of NSCs in vitro, towards the production of new myelin-producing cells. Indeed, upon exposure to conditioned medium derived from PCs (PC-CM), the majority of NSCs gave rise to GalC- and myelin basic protein (MBP)-expressing oligodendrocytes at the expense of the generation of GFAP-positive astrocytes. Consistent with these findings, PC-CM induces an increase in the expression of the oligodendrocyte fate determinant Olig2, while the expression level of the astrocyte determinant ID2 is decreased. Finally, pre-incubation of PC-CM with an anti-Lama2 antibody prevented the generation of oligodendrocytes. Our findings indicate that PCs-derived Lama2 instructs NSCs to an oligodendrocyte fate choice favoring the generation of myelin-producing cells at the expense of astrocytes in vitro. Further studies aiming to reveal the role of PCs during remyelination may pave the way for the development of new therapies for the treatment of MS.

4.
Cell Rep ; 20(8): 1755-1764, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28834740

ABSTRACT

The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs) proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs) rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC) differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.


Subject(s)
Central Nervous System/physiology , Oligodendroglia/physiology , Pericytes/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Central Nervous System/cytology , Central Nervous System/metabolism , Demyelinating Diseases , Humans , Mice , Nerve Regeneration/physiology , Oligodendroglia/cytology , Oligodendroglia/metabolism , Pericytes/cytology , Pericytes/metabolism
5.
Brain Pathol ; 21(2): 163-79, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21269337

ABSTRACT

In human spina bifida aperta (SBA), cerebral pathogenesis [hydrocephalus, Sylvius aqueduct (SA) stenosis and heterotopias] is poorly understood. In animal models, loss of ventricular lining (ependymal denudation) causes SA stenosis and hydrocephalus. We aimed to investigate whether ependymal denudation also takes place in human foetal SBA. Considering that ependymal denudation would be related to alterations in junction proteins, sections through SA of five SBA and six control foetuses (gestational ages ranged between 37 and 40 weeks) were immunostained for markers of ependyma (caveolin 1, ßIV-tubulin, S100), junction proteins (N-cadherin, connexin-43, neural cell adhesion molecule (NCAM), blood vessels (Glut-1) and astrocytes [glial fibrillary acidic protein (GFAP)]. In control foetuses, ependymal denudation was absent. In SBA foetuses different stages of ependymal denudation were observed: (i) intact ependyma/neuroepithelium; (ii) imminent ependymal denudation (with abnormal subcellular location of junction proteins); (iii) ependymal denudation (with protrusion of neuropile into SA, formation of rosettes and macrophage invasion); (iv) astroglial reaction. It is suggested that abnormalities in the formation of gap and adherent junctions result in defective ependymal coupling, desynchronized ciliary beating and ependymal denudation, leading to hydrocephalus. The presence of various stages of ependymal denudation within the same full-term SBA foetuses suggests continuation of the process after birth.


Subject(s)
Cerebral Aqueduct/pathology , Ependyma/pathology , Spina Bifida Cystica/pathology , Fetus , Fluorescent Antibody Technique , Humans , Hydrocephalus/etiology , Hydrocephalus/pathology , Microscopy, Confocal , Spina Bifida Cystica/complications
6.
Biol. Res ; 45(3): 231-241, 2012. ilus
Article in English | LILACS | ID: lil-659281

ABSTRACT

Most cells of the developing mammalian brain derive from the ventricular (VZ) and the subventricular (SVZ) zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs) while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs). Evidence from human and animal models indicates that the common history of hydrocephalus and brain maldevelopment starts early in embryonic life with disruption of the VZ and SVZ. We propose that a "cell junction pathology" involving adherent and gap junctions is a final common outcome of a wide range of gene mutations resulting in proteins abnormally expressed by the VZ cells undergoing disruption. Disruption of the VZ during fetal development implies the loss of NSCs whereas VZ disruption during the perinatal period implies the loss of ependyma. The process of disruption occurs in specific regions of the ventricular system and at specific stages of brain development. This explains why only certain brain structures have an abnormal development, which in turn results in a specific neurological impairment of the newborn. Disruption of the VZ of the Sylvian aqueduct (SA) leads to aqueductal stenosis and hydrocephalus, while disruption of the VZ of telencephalon impairs neurogenesis. We are currently investigating whether grafting of NSCs/neurospheres from normal rats into the CSF of hydrocephalic mutants helps to diminish/repair the outcomes of VZ disruption.


Subject(s)
Animals , Humans , Rats , Hydrocephalus/therapy , Intercellular Junctions/pathology , Neural Stem Cells/pathology , Stem Cell Transplantation/methods , Cell Differentiation , Cell Proliferation , Cerebral Aqueduct/pathology , Cerebral Ventricles/embryology , Cerebral Ventricles/pathology , Hydrocephalus/pathology , Neurogenesis , Neural Stem Cells/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL