Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Pharmacol Res ; 194: 106833, 2023 08.
Article in English | MEDLINE | ID: mdl-37348692

ABSTRACT

Life stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights. Recent research has uncovered the crucial role of astrocytes in coordinating the inflammatory response through the release of extracellular vesicles (ADEVs) during different neuroinflammatory conditions. While the contribution of ADEVs to stress and MDD remains largely unexplored, their potential to modulate immune cells and contribute to MDD pathogenesis is significant. In this article, we delve into the immunomodulatory role of ADEVs, their potential impact on peripheral immune cells, and how their microRNA (miRNA) landscape may hold the key to controlling immune cell activity. Together, these mechanisms may constitute an opportunity to develop novel therapeutic pharmacological approaches to tackle mood disorders.


Subject(s)
Depressive Disorder, Major , Extracellular Vesicles , Humans , Mood Disorders , Astrocytes , Depressive Disorder, Major/pathology , Immune System , Extracellular Vesicles/genetics
2.
EMBO Rep ; 21(2): e48052, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31984629

ABSTRACT

Mesenchymal stem cells (MSCs) have fueled ample translation for the treatment of immune-mediated diseases. They exert immunoregulatory and tissue-restoring effects. MSC-mediated transfer of mitochondria (MitoT) has been demonstrated to rescue target organs from tissue damage, yet the mechanism remains to be fully resolved. Therefore, we explored the effect of MitoT on lymphoid cells. Here, we describe dose-dependent MitoT from mitochondria-labeled MSCs mainly to CD4+ T cells, rather than CD8+ T cells or CD19+ B cells. Artificial transfer of isolated MSC-derived mitochondria increases the expression of mRNA transcripts involved in T-cell activation and T regulatory cell differentiation including FOXP3, IL2RA, CTLA4, and TGFß1, leading to an increase in a highly suppressive CD25+ FoxP3+ population. In a GVHD mouse model, transplantation of MitoT-induced human T cells leads to significant improvement in survival and reduction in tissue damage and organ T CD4+ , CD8+ , and IFN-γ+ expressing cell infiltration. These findings point to a unique CD4+ T-cell reprogramming mechanism with pre-clinical proof-of-concept data that pave the way for the exploration of organelle-based therapies in immune diseases.


Subject(s)
Mesenchymal Stem Cells , CD8-Positive T-Lymphocytes , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Mitochondria , T-Lymphocytes, Regulatory
3.
Brain Res ; 1823: 148679, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37972846

ABSTRACT

Emerging evidence highlights the relevance of the protein post-translational modification by SUMO (Small Ubiquitin-like Modifier) in the central nervous system for modulating cognition and plasticity in health and disease. In these processes, astrocyte-to-neuron crosstalk mediated by extracellular vesicles (EVs) plays a yet poorly understood role. Small EVs (sEVs), including microvesicles and exosomes, contain a molecular cargo of lipids, proteins, and nucleic acids that define their biological effect on target cells. Here, we investigated whether SUMOylation globally impacts the sEV protein cargo. For this, sEVs were isolated from primary cultures of astrocytes by ultracentrifugation or using a commercial sEV isolation kit. SUMO levels were regulated: 1) via plasmids that over-express SUMO, or 2) via experimental conditions that increase SUMOylation, i.e., by using the stress hormone corticosterone, or 3) via the SUMOylation inhibitor 2-D08 (2',3',4'-trihydroxy-flavone, 2-(2,3,4-Trihydroxyphenyl)-4H-1-Benzopyran-4-one). Corticosterone and 2-D08 had opposing effects on the number of sEVs and on their protein cargo. Proteomic analysis showed that increased SUMOylation in corticosterone-treated or plasmid-transfected astrocytes increased the presence of proteins related to cell division, transcription, and protein translation in the derived sEVs. When sEVs derived from corticosterone-treated astrocytes were transferred to neurons to assess their impact on protein synthesis using the fluorescence non-canonical amino acid tagging assay (FUNCAT), we detected an increase in protein synthesis, while sEVs from 2-D08-treated astrocytes had no effect. Our results show that SUMO conjugation plays an important role in the modulation of the proteome of astrocyte-derived sEVs with a potential functional impact on neurons.


Subject(s)
Extracellular Vesicles , Proteome , Proteome/metabolism , Astrocytes/metabolism , Sumoylation , Proteomics , Corticosterone/pharmacology , Extracellular Vesicles/metabolism , Neurons/metabolism , Dendrites/metabolism
4.
Front Cell Dev Biol ; 11: 1061777, 2023.
Article in English | MEDLINE | ID: mdl-37113766

ABSTRACT

Background: The M105I point mutation in α-SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein-alpha) leads in mice to a complex phenotype known as hyh (hydrocephalus with hop gait), characterized by cortical malformation and hydrocephalus, among other neuropathological features. Studies performed by our laboratory and others support that the hyh phenotype is triggered by a primary alteration in embryonic neural stem/progenitor cells (NSPCs) that leads to a disruption of the ventricular and subventricular zones (VZ/SVZ) during the neurogenic period. Besides the canonical role of α-SNAP in SNARE-mediated intracellular membrane fusion dynamics, it also negatively modulates AMP-activated protein kinase (AMPK) activity. AMPK is a conserved metabolic sensor associated with the proliferation/differentiation balance in NSPCs. Methods: Brain samples from hyh mutant mice (hydrocephalus with hop gait) (B6C3Fe-a/a-Napahyh/J) were analyzed by light microscopy, immunofluorescence, and Western blot at different developmental stages. In addition, NSPCs derived from WT and hyh mutant mice were cultured as neurospheres for in vitro characterization and pharmacological assays. BrdU labeling was used to assess proliferative activity in situ and in vitro. Pharmacological modulation of AMPK was performed using Compound C (AMPK inhibitor) and AICAR (AMPK activator). Results: α-SNAP was preferentially expressed in the brain, showing variations in the levels of α-SNAP protein in different brain regions and developmental stages. NSPCs from hyh mice (hyh-NSPCs) displayed reduced levels of α-SNAP and increased levels of phosphorylated AMPKα (pAMPKαThr172), which were associated with a reduction in their proliferative activity and a preferential commitment with the neuronal lineage. Interestingly, pharmacological inhibition of AMPK in hyh-NSPCs increased proliferative activity and completely abolished the increased generation of neurons. Conversely, AICAR-mediated activation of AMPK in WT-NSPCs reduced proliferation and boosted neuronal differentiation. Discussion: Our findings support that α-SNAP regulates AMPK signaling in NSPCs, further modulating their neurogenic capacity. The naturally occurring M105I mutation of α-SNAP provokes an AMPK overactivation in NSPCs, thus connecting the α-SNAP/AMPK axis with the etiopathogenesis and neuropathology of the hyh phenotype.

5.
Vaccines (Basel) ; 10(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35891246

ABSTRACT

Several vaccines have been developed to control the COVID-19 pandemic. CoronaVac®, an inactivated SARS-CoV-2 vaccine, has demonstrated safety and immunogenicity, preventing severe COVID-19 cases. We investigate the safety and non-inferiority of two immunization schedules of CoronaVac® in a non-inferiority trial in healthy adults. A total of 2302 healthy adults were enrolled at 8 centers in Chile and randomly assigned to two vaccination schedules, receiving two doses with either 14 or 28 days between each. The primary safety and efficacy endpoints were solicited adverse events (AEs) within 7 days of each dose, and comparing the number of cases of SARS-CoV-2 infection 14 days after the second dose between the schedules, respectively. The most frequent local AE was pain at the injection site, which was less frequent in participants aged ≥60 years. Other local AEs were reported in less than 5% of participants. The most frequent systemic AEs were headache, fatigue, and myalgia. Most AEs were mild and transient. There were no significant differences for local and systemic AEs between schedules. A total of 58 COVID-19 cases were confirmed, and all but 2 of them were mild. No differences were observed in the proportion of COVID-19 cases between schedules. CoronaVac® is safe, especially in ≥60-year-old participants. Both schedules protected against COVID-19 hospitalization.

6.
Hum Mol Genet ; 18(3): 497-516, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-18996916

ABSTRACT

Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in 'Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315-1325, 1998; Sheen et al. in 'Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69-76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in 'MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789-801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (alpha-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventricular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell adhesion and loss of neuroependymal integrity.


Subject(s)
Cerebral Ventricles/cytology , Periventricular Nodular Heterotopia/pathology , Stem Cells/cytology , Adult , Aged, 80 and over , Animals , Cell Adhesion , Cell Movement , Cerebral Ventricles/physiopathology , Contractile Proteins/genetics , Contractile Proteins/metabolism , Female , Filamins , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Infant, Newborn , Male , Mice , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Neurons/physiology , Periventricular Nodular Heterotopia/physiopathology , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism
7.
Acta Neuropathol ; 121(6): 721-35, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21311902

ABSTRACT

A heterogeneous population of ependymal cells lines the brain ventricles. The evidence about the origin and birth dates of these cell populations is scarce. Furthermore, the possibility that mature ependymal cells are born (ependymogenesis) or self-renewed (ependymal proliferation) postnatally is controversial. The present study was designed to investigate both phenomena in wild-type (wt) and hydrocephalic α-SNAP mutant (hyh) mice at different postnatal stages. In wt mice, proliferating cells in the ventricular zone (VZ) were only found in two distinct regions: the dorsal walls of the third ventricle and Sylvian aqueduct (SA). Most proliferating cells were monociliated and nestin+, likely corresponding to radial glial cells. Postnatal cumulative BrdU-labeling showed that most daughter cells remained in the VZ of both regions and they lost nestin-immunoreactivity. Furthermore, some labeled cells became multiciliated and GLUT-1+, indicating they were ependymal cells born postnatally. Postnatal pulse BrdU-labeling and Ki-67 immunostaining further demonstrated the presence of cycling multiciliated ependymal cells. In hydrocephalic mutants, the dorsal walls of the third ventricle and SA expanded enormously and showed neither ependymal disruption nor ventriculostomies. This phenomenon was sustained by an increased ependymogenesis. Consequently, in addition to the physical and geometrical mechanisms traditionally explaining ventricular enlargement in fetal-onset hydrocephalus, we propose that postnatal ependymogenesis could also play a role. Furthermore, as generation of new ependymal cells during postnatal stages was observed in distinct regions of the ventricular walls, such as the roof of the third ventricle, it may be a key mechanism involved in the development of human type 1 interhemispheric cysts.


Subject(s)
Brain/pathology , Ependyma/growth & development , Hydrocephalus/pathology , Third Ventricle/physiopathology , Age Factors , Animals , Animals, Newborn , Bromodeoxyuridine/metabolism , Cell Count , Cell Proliferation , Disease Models, Animal , Ependyma/ultrastructure , Gene Expression Regulation, Developmental/physiology , Glial Fibrillary Acidic Protein/metabolism , Glucose Transporter Type 1/metabolism , Mice , Mice, Neurologic Mutants , Microscopy, Electron, Scanning , Proliferating Cell Nuclear Antigen/metabolism , Third Ventricle/cytology , Tubulin/metabolism
8.
Cell Death Dis ; 12(1): 4, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33414434

ABSTRACT

Cell death by glutamate excitotoxicity, mediated by N-methyl-D-aspartate (NMDA) receptors, negatively impacts brain function, including but not limited to hippocampal neurons. The NF-κB transcription factor (composed mainly of p65/p50 subunits) contributes to neuronal death in excitotoxicity, while its inhibition should improve cell survival. Using the biotin switch method, subcellular fractionation, immunofluorescence, and luciferase reporter assays, we found that NMDA-stimulated NF-κB activity selectively in hippocampal neurons, while endothelial nitric oxide synthase (eNOS), an enzyme expressed in neurons, is involved in the S-nitrosylation of p65 and consequent NF-κB inhibition in cerebrocortical, i.e., resistant neurons. The S-nitro proteomes of cortical and hippocampal neurons revealed that different biological processes are regulated by S-nitrosylation in susceptible and resistant neurons, bringing to light that protein S-nitrosylation is a ubiquitous post-translational modification, able to influence a variety of biological processes including the homeostatic inhibition of the NF-κB transcriptional activity in cortical neurons exposed to NMDA receptor overstimulation.


Subject(s)
Neurons/metabolism , Nitric Oxide Synthase Type III/physiology , Transcription Factor RelA/metabolism , Animals , Cells, Cultured , Cerebellar Cortex , Embryo, Mammalian , Hippocampus , Neurons/cytology , Primary Cell Culture , Protein Processing, Post-Translational , Rats , Rats, Sprague-Dawley
9.
Front Cell Neurosci ; 15: 636176, 2021.
Article in English | MEDLINE | ID: mdl-33762910

ABSTRACT

Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERß) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.

10.
Sci Rep ; 11(1): 9244, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927303

ABSTRACT

Exposure to an adverse prenatal environment can influence fetal development and result in long-lasting changes in the offspring. However, the association between maternal exposure to stressful events during pregnancy and the achievement of pre-reading skills in the offspring is unknown. Here we examined the association between prenatal exposure to the Chilean high-magnitude earthquake that occurred on February 27th, 2010 and the development of early reading precursors skills (listening comprehension, print knowledge, alphabet knowledge, vocabulary, and phonological awareness) in children at kindergarten age. This multilevel retrospective cohort study including 3280 children, of whom 2415 were unexposed and 865 were prenatally exposed to the earthquake shows substantial evidence that maternal exposure to an unambiguously stressful event resulted in impaired pre-reading skills and that a higher detrimental effect was observed in those children who had been exposed to the earthquake during the first trimester of gestation. In addition, females were more significantly affected by the exposure to the earthquake than their male peers in alphabet knowledge; contrarily, males were more affected than females in print knowledge skills. These findings suggest that early intervention programs for pregnant women and/or children exposed to prenatal stress may be effective strategies to overcome impaired pre-reading skills in children.


Subject(s)
Comprehension/physiology , Earthquakes , Maternal Exposure , Prenatal Exposure Delayed Effects , Reading , Child , Child, Preschool , Chile , Female , Humans , Male , Pregnancy , Pregnancy Trimester, First , Retrospective Studies , Vocabulary
11.
Cells ; 9(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32492799

ABSTRACT

Stress is a widespread problem in today's societies, having important consequences on brain function. Among the plethora of mechanisms involved in the stress response at the molecular level, the role of microRNAs (miRNAs) is beginning to be recognized. The control of gene expression by these noncoding RNAs makes them essential regulators of neuronal and synaptic physiology, and alterations in their levels have been associated with pathological conditions and mental disorders. In particular, the excitatory (i.e., glutamate-mediated) neurotransmission is importantly affected by stress. Here, we found that loss of miR-26a-5p (miR-26a henceforth) function in primary hippocampal neurons increased the frequency and amplitude of miniature excitatory currents, as well as the expression levels of the excitatory postsynaptic scaffolding protein PSD95. Incubation of primary hippocampal neurons with corticosterone downregulated miR-26a, an effect that mirrored our in vivo results, as miR-26a was downregulated in the hippocampus as well as in blood serum-derived small extracellular vesicles (sEVs) of rats exposed to two different stress paradigms by movement restriction (i.e., stress by restraint in cages or by complete immobilization in bags). Overall, these results suggest that miR-26a may be involved in the generalized stress response and that a stress-induced downregulation of miR-26a could have long-term effects on glutamate neurotransmission.


Subject(s)
Biomarkers/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Stress, Psychological/genetics , Synaptic Transmission , Animals , Disease Models, Animal , Disks Large Homolog 4 Protein , Down-Regulation/genetics , MicroRNAs/blood , MicroRNAs/genetics , Miniature Postsynaptic Potentials , Rats, Sprague-Dawley , Synapses/metabolism , Synaptic Transmission/genetics
12.
Cells ; 9(4)2020 04 10.
Article in English | MEDLINE | ID: mdl-32290095

ABSTRACT

In the last few decades, it has been established that astrocytes play key roles in the regulation of neuronal morphology. However, the contribution of astrocyte-derived small extracellular vesicles (sEVs) to morphological differentiation of neurons has only recently been addressed. Here, we showed that cultured astrocytes expressing a GFP-tagged version of the stress-regulated astrocytic enzyme Aldolase C (Aldo C-GFP) release small extracellular vesicles (sEVs) that are transferred into cultured hippocampal neurons. Surprisingly, Aldo C-GFP-containing sEVs (Aldo C-GFP sEVs) displayed an exacerbated capacity to reduce the dendritic complexity in developing hippocampal neurons compared to sEVs derived from control (i.e., GFP-expressing) astrocytes. Using bioinformatics and biochemical tools, we found that the total content of overexpressed Aldo C-GFP correlates with an increased content of endogenous miRNA-26a-5p in both total astrocyte homogenates and sEVs. Notably, neurons magnetofected with a nucleotide sequence that mimics endogenous miRNA-26a-5p (mimic 26a-5p) not only decreased the levels of neuronal proteins associated to morphogenesis regulation, but also reproduced morphological changes induced by Aldo-C-GFP sEVs. Furthermore, neurons magnetofected with a sequence targeting miRNA-26a-5p (antago 26a-5p) were largely resistant to Aldo C-GFP sEVs. Our results support a novel and complex level of astrocyte-to-neuron communication mediated by astrocyte-derived sEVs and the activity of their miRNA content.


Subject(s)
Astrocytes/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Animals , Astrocytes/cytology , Cell Differentiation/physiology , Cells, Cultured , Dendrites/metabolism , Female , Fructose-Bisphosphate Aldolase/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley
14.
J Neuropathol Exp Neurol ; 68(9): 1006-20, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19680142

ABSTRACT

Neural stem cells persist after embryonic development in the subventricular zone (SVZ) niche and produce new neural cells during postnatal life; ependymal cells are a key component associated with this neurogenic niche. In the animal model of human hydrocephalus, the hyh mouse, the ependyma of the lateral ventricles is progressively lost during late embryonic and early postnatal life and disappears from most of the ventricular surface throughout its life span. To determine the potential consequences of this loss on the SVZ, we characterized the abnormalities in this neurogenic niche in hyh mice. There was overall disorganization and a marked reduction of proliferative cells in the SVZ of both newborn and adult hyh hydrocephalic mice in vivo; neuroblasts were displaced to the ventricular surface, and their migration through the rostral migratory stream was reduced. The numbers of resident neural progenitor cells in hyh mice were also markedly reduced, but they were capable of proliferating, forming neurospheres, and differentiating into neurons and glia in vitro in a manner indistinguishable from that of wild-type progenitor cells. These findings suggest that the reduction of proliferative activity observed in vivo is not caused by a cell autonomous defect of SVZ progenitors but is a consequence of a reduced number of these cells. Furthermore, the overall tissue disorganization of the SVZ and displacement of neuroblasts imply alterations in the neurogenic niche of postnatal hyh mice.


Subject(s)
Hydrocephalus/pathology , Lateral Ventricles/pathology , Neurogenesis/physiology , Neurons/pathology , Stem Cells/pathology , Animals , Autoradiography , Cell Differentiation/physiology , Cell Proliferation , Disease Models, Animal , Ependyma/metabolism , Ependyma/pathology , Fluorescent Antibody Technique , Hydrocephalus/genetics , Hydrocephalus/metabolism , Immunohistochemistry , Lateral Ventricles/metabolism , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Neurons/metabolism , Stem Cells/metabolism
15.
Mol Cell Probes ; 23(6): 281-90, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19615440

ABSTRACT

alpha-SNAP is an essential component of the protein machinery responsible for membrane fusion events in different cell types. The hyh (hydrocephalus with hop gait) mouse carries a missense mutation in Napa gene that results in a point mutation (M105I) in alpha-SNAP protein. Homozygous animals for the mutant allele have been identified by the clinical and/or neuropathological phenotype, or by direct sequencing of PCR products. The aims of the present study were (i) to develop a high-throughput technique to genotype hyh mice, (ii) to correlate genotype-phenotype, and (iii) to analyze the earliest pathological changes of hyh mutant mice. As no restriction sites are affected by the hyh mutation, we resolved this problem by creating a BspHI restriction site with a modified (mismatch) polymerase chain reaction (PCR) primer in wild-type allele. This artificially created restriction site (ACRS)-PCR technique is a simple, rapid and reliable method to genotype hyh mice in a day-work procedure. Biochemical and histological analysis of genotyped hyh embryos at different developmental stages allowed us to identify and characterize the earliest brain pathological changes of the hyh phenotype, including the first signs of neuroepithelial disruption and neuronal ectopia. In addition, genotype-phenotype analysis of 327 animals confirmed that (i) hyh is a single-gene autosomal recessive disorder, and (ii) the disorder has 100% penetrance (i.e., the mutation was only present in affected mice). The genotyping method described here enhances the potentiality of hyh mouse as a unique in vivo model to study the role of membrane trafficking in different developmental and physiological processes.


Subject(s)
Abnormalities, Multiple/pathology , Mutation, Missense , Polymerase Chain Reaction/methods , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics , Abnormalities, Multiple/embryology , Abnormalities, Multiple/genetics , Animals , Base Sequence , Blotting, Western , Brain/abnormalities , Brain/metabolism , Female , Genes, Recessive , Genotype , Hydrocephalus/pathology , Immunohistochemistry , Lameness, Animal/pathology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Mutant Strains , Phenotype , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Time Factors
16.
Sci Rep ; 9(1): 17374, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31758001

ABSTRACT

After sperm-oocyte fusion, cortical granules (CGs) located in oocyte cortex undergo exocytosis and their content is released into the perivitelline space to avoid polyspermy. Thus, cortical granule exocytosis (CGE) is a key process for fertilization success. We have demonstrated that alpha-SNAP -and its functional partner NSF- mediate fusion of CGs with the plasma membrane in mouse oocytes. Here, we examined at cellular and ultrastructural level oocytes from hyh (hydrocephalus with hop gait) mice, which present a missense mutation in the Napa gene that results in the substitution of methionine for isoleucine at position 105 (M105I) of alpha-SNAP. Mutated alpha-SNAP was mislocalized in hyh oocytes while NSF expression increased during oocyte maturation. Staining of CGs showed that 9.8% of hyh oocytes had abnormal localization of CGs and oval shape. Functional tests showed that CGE was impaired in hyh oocytes. Interestingly, in vitro fertilization assays showed a decreased fertilization rate for hyh oocytes. Furthermore, fertilized hyh oocytes presented an increased polyspermy rate compared to wild type ones. At ultrastructural level, hyh oocytes showed small mitochondria and a striking accumulation and secretion of degradative structures. Our findings demonstrate the negative effects of alpha-SNAP M105 mutation on oocyte biology and further confirm the relevance of alpha-SNAP in female fertility.


Subject(s)
Infertility, Female/genetics , Mutation, Missense , Oocytes/cytology , Oocytes/physiology , Oogenesis/genetics , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics , Amino Acid Substitution/genetics , Animals , Female , Fertility/genetics , Fertilization/genetics , Homozygote , Isoleucine/genetics , Male , Metaphase/genetics , Methionine/genetics , Mice , Mice, Transgenic , Oocytes/ultrastructure
17.
Transl Res ; 210: 57-79, 2019 08.
Article in English | MEDLINE | ID: mdl-30904442

ABSTRACT

Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.


Subject(s)
Adherens Junctions/metabolism , Cell Polarity , Neural Stem Cells/pathology , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/virology , Zika Virus Infection/congenital , Animals , Humans , Neurodevelopmental Disorders/epidemiology , Syndrome
18.
CNS Neurosci Ther ; 24(4): 343-352, 2018 04.
Article in English | MEDLINE | ID: mdl-29582588

ABSTRACT

AIMS: Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive abnormalities in cognitive function, mental state, and motor control. HD is characterized by a failure in brain energy metabolism. It has been proposed that monocarboxylates, such as lactate, support brain activity. During neuronal synaptic activity, ascorbic acid released from glial cells stimulates lactate and inhibits glucose transport. The aim of this study was to evaluate the expression and function of monocarboxylate transporters (MCTs) in two HD models. METHODS: Using immunofluorescence, qPCR, and Western blot analyses, we explored mRNA and protein levels of MCTs in the striatum of R6/2 animals and HdhQ7/111 cells. We also evaluated MCT function in HdhQ7/111 cells using radioactive tracers and the fluorescent lactate sensor Laconic. RESULTS: We found no significant differences in the mRNA or protein levels of neuronal MCTs. Functional analyses revealed that neuronal MCT2 had a high catalytic efficiency in HD cells. Ascorbic acid did not stimulate lactate uptake in HD cells. Ascorbic acid was also unable to inhibit glucose transport in HD cells because they exhibit decreased expression of the neuronal glucose transporter GLUT3. CONCLUSION: We demonstrate that stimulation of lactate uptake by ascorbic acid is a consequence of inhibiting glucose transport. Supporting this, lactate transport stimulation by ascorbic acid in HD cells was completely restored by overexpressing GLUT3. Therefore, alterations in GLUT3 expression could be responsible for inefficient use of lactate in HD neurons, contributing to the metabolic failure observed in HD.


Subject(s)
Glucose Transporter Type 3/metabolism , Huntington Disease/metabolism , Lactic Acid/metabolism , Animals , Cell Line , Corpus Striatum/metabolism , Disease Models, Animal , Female , Humans , Male , Mice, Transgenic , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , RNA, Messenger/metabolism , Rats
19.
J Neuropathol Exp Neurol ; 66(12): 1082-92, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18090917

ABSTRACT

Hyh mutant mice develop long-lasting hydrocephalus and represent a good model for investigating neuropathologic events associated with hydrocephalus. The study of their brains by use of lectin binding, bromodeoxyuridine labeling, immunochemistry, and scanning electron microscopy revealed that certain events related to hydrocephalus followed a well-defined pattern. A program of neuroepithelium/ependyma denudation was initiated at embryonic day 12 and terminated at the end of the second postnatal week. After the third postnatal week the denuded areas remained permanently devoid of ependyma. In contrast, a selective group of ependymal areas resisted denudation throughout the lifespan. Ependymal denudation triggered neighboring astrocytes to proliferate. These astrocytes expressed particular glial markers and formed a superficial cell layer replacing the lost ependyma. The loss of the neuroepithelium/ependyma layer at specific regions of the ventricular walls and at specific stages of brain development would explain the fact that only certain brain structures had abnormal development. Therefore, commissural axons forming the corpus callosum and the hippocampal commissure displayed abnormalities, whereas those forming the anterior and posterior commissures did not; and the brain cortex was not homogenously affected, with the cingular and frontal cortices being the most altered regions. All of these telencephalic alterations developed at stages when hydrocephalus was not yet patent at the lateral ventricles, indicating that abnormal neural development and hydrocephalus are linked at the etiologic level, rather than the former being a consequence of the latter. All evidence collected on hydrocephalic hyh mutant mice indicates that a primary alteration in the neuroepithelium/ependyma cell lineage triggers both hydrocephalus and abnormalities in telencephalic development.


Subject(s)
Brain/abnormalities , Brain/pathology , Gene Expression Regulation, Developmental/physiology , Hydrocephalus , Microfilament Proteins/genetics , Animals , Animals, Newborn , Brain/ultrastructure , Bromodeoxyuridine/metabolism , Disease Models, Animal , Disease Progression , Embryo, Mammalian , Ependyma/abnormalities , Ependyma/pathology , Female , Gene Expression Regulation, Developmental/genetics , Hydrocephalus/genetics , Hydrocephalus/pathology , Hydrocephalus/physiopathology , Male , Mice , Mice, Mutant Strains , Nerve Tissue Proteins/metabolism , Pregnancy
20.
Stem Cells Int ; 2017: 1719050, 2017.
Article in English | MEDLINE | ID: mdl-29081809

ABSTRACT

Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs) may play a fundamental role in such phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL