Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Immunol ; 20(6): 701-710, 2019 06.
Article in English | MEDLINE | ID: mdl-31110314

ABSTRACT

Cachexia represents a leading cause of morbidity and mortality in various cancers, chronic inflammation and infections. Understanding of the mechanisms that drive cachexia has remained limited, especially for infection-associated cachexia (IAC). In the present paper we describe a model of reversible cachexia in mice with chronic viral infection and identify an essential role for CD8+ T cells in IAC. Cytokines linked to cancer-associated cachexia did not contribute to IAC. Instead, virus-specific CD8+ T cells caused morphologic and molecular changes in the adipose tissue, which led to depletion of lipid stores. These changes occurred at a time point that preceded the peak of the CD8+ T cell response and required T cell-intrinsic type I interferon signaling and antigen-specific priming. Our results link systemic antiviral immune responses to adipose-tissue remodeling and reveal an underappreciated role of CD8+ T cells in IAC.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cachexia/etiology , Virus Diseases/complications , Virus Diseases/immunology , Adipose Tissue/diagnostic imaging , Adipose Tissue/immunology , Adipose Tissue/metabolism , Adipose Tissue/virology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cachexia/diagnostic imaging , Cachexia/metabolism , Cachexia/pathology , Chronic Disease , Cytokines/blood , Cytokines/metabolism , Female , Interferon Type I/metabolism , Lipid Metabolism , Lipolysis , Lymphocyte Activation/immunology , Lymphocytic choriomeningitis virus , Magnetic Resonance Imaging/methods , Male , Mice , Signal Transduction , Virus Diseases/virology
2.
Immunity ; 53(3): 496-509, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937151

ABSTRACT

Over the past 10 years, the field of immunometabolism made great strides to unveil the crucial role of intracellular metabolism in regulating immune cell function. Emerging insights into how systemic inflammation and metabolism influence each other provide a critical additional dimension on the organismal level. Here, we discuss the concept of systemic immunometabolism and review the current understanding of the communication circuits that underlie the reciprocal impact of systemic inflammation and metabolism across organs in inflammatory and infectious diseases, as well as how these mechanisms apply to homeostasis. We present current challenges of systemic immunometabolic research, and in this context, highlight opportunities and put forward ideas to effectively explore organismal physiological complexity in both health and disease.


Subject(s)
Adipose Tissue/immunology , Adipose Tissue/metabolism , Energy Metabolism/physiology , Immune System/metabolism , Adipose Tissue/cytology , Homeostasis/immunology , Humans , Inflammation/metabolism
3.
Immunity ; 51(6): 1074-1087.e9, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31784108

ABSTRACT

Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon Type I/immunology , Liver/metabolism , Lymphocytic choriomeningitis virus/immunology , Receptor, Interferon alpha-beta/metabolism , Animals , Arginine/blood , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Hepatocytes/metabolism , Liver/immunology , Liver/virology , Lymphocytic Choriomeningitis/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ornithine/blood , Ornithine Carbamoyltransferase/genetics , Signal Transduction/immunology , Urea/metabolism , Vero Cells
4.
Immunity ; 43(5): 974-86, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26588782

ABSTRACT

Tissue damage caused by viral hepatitis is a major cause of morbidity and mortality worldwide. Using a mouse model of viral hepatitis, we identified virus-induced early transcriptional changes in the redox pathways in the liver, including downregulation of superoxide dismutase 1 (Sod1). Sod1(-/-) mice exhibited increased inflammation and aggravated liver damage upon viral infection, which was independent of T and NK cells and could be ameliorated by antioxidant treatment. Type I interferon (IFN-I) led to a downregulation of Sod1 and caused oxidative liver damage in Sod1(-/-) and wild-type mice. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against virus-induced liver damage. These results delineate IFN-I mediated oxidative stress as a key mediator of virus-induced liver damage and describe a mechanism of innate-immunity-driven pathology, linking IFN-I signaling with antioxidant host defense and infection-associated tissue damage. VIDEO ABSTRACT.


Subject(s)
Hepatocytes/immunology , Interferon Type I/immunology , Oxidative Stress/immunology , Superoxide Dismutase/immunology , Animals , Antioxidants/metabolism , Hepatitis, Viral, Animal/immunology , Immunity, Innate/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Liver/immunology , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Signal Transduction/immunology , Superoxide Dismutase-1 , T-Lymphocytes/immunology , Transcription, Genetic/immunology
5.
J Hepatol ; 75(5): 1164-1176, 2021 11.
Article in English | MEDLINE | ID: mdl-34242699

ABSTRACT

BACKGROUND & AIMS: 24-Norursodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid used to treat immune-mediated cholestatic liver diseases, such as primary sclerosing cholangitis (PSC), where dysregulated T cells including CD8+ T cells contribute to hepatobiliary immunopathology. We hypothesized that NorUDCA may directly modulate CD8+ T cell function thus contributing to its therapeutic efficacy. METHODS: NorUDCA's immunomodulatory effects were first studied in Mdr2-/- mice, as a cholestatic model of PSC. To differentiate NorUDCA's immunomodulatory effects on CD8+ T cell function from its anticholestatic actions, we also used a non-cholestatic model of hepatic injury induced by an excessive CD8+ T cell immune response upon acute non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Studies included molecular and biochemical approaches, flow cytometry and metabolic assays in murine CD8+ T cells in vitro. Mass spectrometry was used to identify potential CD8+ T cell targets modulated by NorUDCA. The signaling effects of NorUDCA observed in murine cells were validated in circulating T cells from patients with PSC. RESULTS: NorUDCA demonstrated immunomodulatory effects by reducing hepatic innate and adaptive immune cells, including CD8+ T cells in the Mdr2-/- model. In the non-cholestatic model of CD8+ T cell-driven immunopathology induced by acute LCMV infection, NorUDCA ameliorated hepatic injury and systemic inflammation. Mechanistically, NorUDCA demonstrated strong immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, expansion, glycolysis and mTORC1 signaling. Mass spectrometry identified that NorUDCA regulates CD8+ T cells by targeting mTORC1. NorUDCA's impact on mTORC1 signaling was further confirmed in circulating PSC CD8+ T cells. CONCLUSIONS: NorUDCA has a direct modulatory impact on CD8+ T cells and attenuates excessive CD8+ T cell-driven hepatic immunopathology. These findings are relevant for treatment of immune-mediated liver diseases such as PSC. LAY SUMMARY: Elucidating the mechanisms by which 24-norursodeoxycholic acid (NorUDCA) works for the treatment of immune-mediated liver diseases, such as primary sclerosing cholangitis, is of considerable clinical interest. Herein, we uncovered an unrecognized property of NorUDCA in the immunometabolic regulation of CD8+ T cells, which has therapeutic relevance for immune-mediated liver diseases, including PSC.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Inflammation/drug therapy , Liver/drug effects , Ursodeoxycholic Acid/analogs & derivatives , Animals , CD8-Positive T-Lymphocytes/drug effects , Disease Models, Animal , Inflammation/physiopathology , Liver/physiopathology , Mice , Mice, Inbred C57BL , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use
6.
Plant Biotechnol J ; 13(4): 578-89, 2015 May.
Article in English | MEDLINE | ID: mdl-25400128

ABSTRACT

Targeted genomic regulation is a powerful approach to accelerate trait discovery and development in agricultural biotechnology. Bacteria and archaea use clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) regulatory systems for adaptive molecular immunity against foreign nucleic acids introduced by invading phages and conjugative plasmids. The type II CRISPR/Cas system has been adapted for genome editing in many cell types and organisms. A recent study used the catalytically inactive Cas9 (dCas9) protein combined with guide-RNAs (gRNAs) as a DNA-targeting platform to modulate gene expression in bacterial, yeast, and human cells. Here, we modified this DNA-targeting platform for targeted transcriptional regulation in planta by developing chimeric dCas9-based transcriptional activators and repressors. To generate transcriptional activators, we fused the dCas9 C-terminus with the activation domains of EDLL and TAL effectors. To generate a transcriptional repressor, we fused the dCas9 C-terminus with the SRDX repression domain. Our data demonstrate that dCas9 fusion with the EDLL activation domain (dCas9:EDLL) and the TAL activation domain (dCas9:TAD), guided by gRNAs complementary to selected promoter elements, induce strong transcriptional activation on Bs3::uidA targets in plant cells. Further, the dCas9:SRDX-mediated transcriptional repression of an endogenous gene. Thus, our results suggest that the synthetic transcriptional repressor (dCas9:SRDX) and activators (dCas9:EDLL and dCas9:TAD) can be used as endogenous transcription factors to repress or activate transcription of an endogenous genomic target. Our data indicate that the CRISPR/dCas9 DNA-targeting platform can be used in plants as a functional genomics tool and for biotechnological applications.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Expression Regulation, Plant , Plants/genetics , Transcription Factors/metabolism , Transcription, Genetic
7.
Nat Rev Immunol ; 22(5): 309-321, 2022 05.
Article in English | MEDLINE | ID: mdl-34608281

ABSTRACT

Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.


Subject(s)
Cachexia , Neoplasms , Cachexia/etiology , Cachexia/metabolism , Cachexia/pathology , Cytokines/physiology , Humans , Muscle, Skeletal , Neoplasms/metabolism , Weight Loss
8.
Front Immunol ; 12: 638485, 2021.
Article in English | MEDLINE | ID: mdl-34194424

ABSTRACT

Cytotoxic T lymphocytes (CTLs) represent key immune effectors of the host response against chronic viruses, due to their cytotoxic response to virus-infected cells. In response to this selection pressure, viruses may accumulate escape mutations that evade CTL-mediated control. To study the emergence of CTL escape mutations, we employed the murine chronic infection model of lymphocytic choriomeningitis virus (LCMV). We developed an amplicon-based next-generation sequencing pipeline to detect low frequency mutations in the viral genome and identified non-synonymous mutations in the immunodominant LCMV CTL epitope, GP33-41, in infected wildtype mice. Infected Rag2-deficient mice lacking CTLs did not contain such viral mutations. By using transgenic mice with T cell receptors specific to GP33-41, we characterized the emergence of viral mutations in this epitope under varying selection pressure. We investigated the two most abundant viral mutations by employing reverse genetically engineered viral mutants encoding the respective mutations. These experiments provided evidence that these mutations prevent activation and expansion of epitope-specific CD8 T cells. Our findings on the mutational dynamics of CTL escape mutations in a widely-studied viral infection model contributes to our understanding of how chronic viruses interact with their host and evade the immune response. This may guide the development of future treatments and vaccines against chronic infections.


Subject(s)
Antigens, Viral/metabolism , CD8-Positive T-Lymphocytes/immunology , Glycoproteins/metabolism , Immunodominant Epitopes/metabolism , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Peptide Fragments/metabolism , Viral Proteins/metabolism , Animals , Antigens, Viral/genetics , Cells, Cultured , Disease Models, Animal , Glycoproteins/genetics , Immune Evasion , Immunodominant Epitopes/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/genetics , Viral Proteins/genetics
9.
Cancer Cell ; 35(1): 125-139.e9, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30645971

ABSTRACT

The marsupial Tasmanian devil (Sarcophilus harrisii) faces extinction due to transmissible devil facial tumor disease (DFTD). To unveil the molecular underpinnings of this transmissible cancer, we combined pharmacological screens with an integrated systems-biology characterization. Sensitivity to inhibitors of ERBB tyrosine kinases correlated with their overexpression. Proteomic and DNA methylation analyses revealed tumor-specific signatures linked to the evolutionary conserved oncogenic STAT3. ERBB inhibition blocked phosphorylation of STAT3 and arrested cancer cells. Pharmacological blockade of ERBB or STAT3 prevented tumor growth in xenograft models and restored MHC class I expression. This link between the hyperactive ERBB-STAT3 axis and major histocompatibility complex class I-mediated tumor immunosurveillance provides mechanistic insights into horizontal transmissibility and puts forward a dual chemo-immunotherapeutic strategy to save Tasmanian devils from DFTD. VIDEO ABSTRACT.


Subject(s)
ErbB Receptors/metabolism , Facial Neoplasms/drug therapy , Facial Neoplasms/veterinary , Proteomics/methods , STAT3 Transcription Factor/metabolism , Small Molecule Libraries/administration & dosage , Animals , DNA Methylation , Drug Screening Assays, Antitumor , Facial Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Histocompatibility Antigens Class I/metabolism , Marsupialia , Mice , Phosphorylation , Signal Transduction , Small Molecule Libraries/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL