Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 48(1): 91-106.e6, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29343444

ABSTRACT

CD103+ dendritic cells are critical for cross-presentation of tumor antigens. Here we have shown that during immunotherapy, large numbers of cells expressing CD103 arose in murine tumors via direct differentiation of Ly6c+ monocytic precursors. These Ly6c+CD103+ cells could derive from bone-marrow monocytic progenitors (cMoPs) or from peripheral cells present within the myeloid-derived suppressor cell (MDSC) population. Differentiation was controlled by inflammation-induced activation of the transcription factor p53, which drove upregulation of Batf3 and acquisition of the Ly6c+CD103+ phenotype. Mice with a targeted deletion of p53 in myeloid cells selectively lost the Ly6c+CD103+ population and became unable to respond to multiple forms of immunotherapy and immunogenic chemotherapy. Conversely, increasing p53 expression using a p53-agonist drug caused a sustained increase in Ly6c+CD103+ cells in tumors during immunotherapy, which markedly enhanced the efficacy and duration of response. Thus, p53-driven differentiation of Ly6c+CD103+ monocytic cells represents a potent and previously unrecognized target for immunotherapy.


Subject(s)
Antigen-Presenting Cells/physiology , Monocytes/physiology , Myeloid Cells/metabolism , Neoplasms/immunology , Tumor Suppressor Protein p53/metabolism , Animals , Antigen-Presenting Cells/immunology , Antigens, CD/metabolism , Antigens, Ly/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Flow Cytometry , Humans , Immunotherapy/methods , Integrin alpha Chains/metabolism , Mice , Monocytes/immunology , Myeloid Cells/physiology
2.
J Cell Biochem ; : e30612, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923575

ABSTRACT

Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a high mortality rate. The aim of the present study was to investigate the clinical significance of Family with Sequence Similarity 3, Member C, FAM3C, in GBM using bioinformatic-integrated analysis. First, we performed the transcriptomic integration analysis to assess the expression profile of FAM3C in GBM using several data sets (RNA-sequencing and scRNA-sequencing), which were obtained from TCGA and GEO databases. By using the STRING platform, we investigated FAM3C-coregulated genes to construct the protein-protein interaction network. Next, Metascape, Enrichr, and CIBERSORT databases were used. We found FAM3C high expression in GBM with poor survival rates. Further, we observed, via FAM3C coexpression network analysis, that FAM3C plays key roles in several hallmarks of cancer. Surprisingly, we also highlighted five FAM3C­coregulated genes overexpressed in GBM. Specifically, we demonstrated the association between the high expression of FAM3C and the abundance of the different immune cells, which may markedly worsen GBM prognosis. For the first time, our findings suggest that FAM3C not only can be a new emerging biomarker with promising therapeutic values to GBM patients but also gave a new insight into a potential resource for future GBM studies.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000244

ABSTRACT

Cutaneous wounds, both acute and chronic, begin with loss of the integrity, and thus barrier function, of the skin. Surgery and trauma produce acute wounds. There are 22 million surgical procedures per year in the United States alone, based on data from the American College of Surgeons, resulting in a prevalence of 6.67%. Acute traumatic wounds requiring repair total 8 million per year, 2.42% or 24.2 per 1000. The cost of wound care is increasing; it approached USD 100 billion for just Medicare in 2018. This burden for wound care will continue to rise with population aging, the increase in metabolic syndrome, and more elective surgeries. To heal a wound, an orchestrated, evolutionarily conserved, and complex series of events involving cellular and molecular agents at the local and systemic levels are necessary. The principal factors of this important function include elements from the neurological, cardiovascular, immune, nutritional, and endocrine systems. The objectives of this review are to provide clinicians engaged in wound care and basic science researchers interested in wound healing with an updated synopsis from recent publications. We also present data from our primary investigations, testing the hypothesis that cannabidiol can alter cutaneous wound healing and documenting their effects in wild type (C57/BL6) and db/db mice (Type 2 Diabetes Mellitus, T2DM). The focus is on the potential roles of the endocannabinoid system, cannabidiol, and the important immune-regulatory wound cytokine IL-33, a member of the IL-1 family, and connective tissue growth factor, CTGF, due to their roles in both normal and abnormal wound healing. We found an initial delay in the rate of wound closure in B6 mice with CBD, but this difference disappeared with time. CBD decreased IL-33 + cells in B6 by 70% while nearly increasing CTGF + cells in db/db mice by two folds from 18.6% to 38.8% (p < 0.05) using a dorsal wound model. We review the current literature on normal and abnormal wound healing, and document effects of CBD in B6 and db/db dorsal cutaneous wounds. CBD may have some beneficial effects in diabetic wounds. We applied 6-mm circular punch to create standard size full-thickness dorsal wounds in B6 and db/db mice. The experimental group received CBD while the control group got only vehicle. The outcome measures were rate of wound closure, wound cells expressing IL-33 and CTGF, and ILC profiles. In B6, the initial rate of wound closure was slower but there was no delay in the time to final closure, and cells expressing IL-33 was significantly reduced. CTGF + cells were higher in db/bd wounds treated with CBD. These data support the potential use of CBD to improve diabetic cutaneous wound healing.


Subject(s)
Cannabidiol , Skin , Wound Healing , Wound Healing/drug effects , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Humans , Skin/metabolism , Skin/drug effects , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy
4.
Neurobiol Dis ; 180: 106090, 2023 05.
Article in English | MEDLINE | ID: mdl-36934795

ABSTRACT

Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.


Subject(s)
Brain Injuries, Traumatic , Cognitive Aging , Humans , Cellular Senescence , Brain Injuries, Traumatic/complications , Inflammation
5.
Curr Issues Mol Biol ; 45(1): 223-232, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36661503

ABSTRACT

Elabela is a component of the apelinergic system and may exert a cardioprotective role by regulating the innate immune responses. Innate lymphoid cells (ILCs) have a significant role in initiating and progressing immune-inflammatory responses. While ILCs have been intensively investigated during the last decade, little is known about their relationship with the apelinergic system and their cardiac diversity in a gender-based paradigm. In this study, we investigated the polarization of cardiac ILCs by Elabela in males versus females in a mouse model. Using flow cytometry and immunohistochemistry analyses, we showed a potential interplay between Elabela and cardiac ILCs and whether such interactions depend on sexual dimorphism. Our findings showed, for the first time, that Elabela is expressed by cardiac ILCs, and its expression is higher in females' ILC class 3 (ILC3s) compared to males. Females had higher frequencies of ILC1s, and Elabela was able to suppress T-cell activation and the expression of co-stimulatory CD28 in a mixed lymphocyte reaction assay (MLR). In conclusion, our results suggest, for the first time, a protective role for Elabela through its interplay with ILCs and that it can be used as an immunotherapeutic target in the treatment of cardiovascular disorders in a gender-based fashion.

6.
Mol Psychiatry ; 26(7): 3043-3059, 2021 07.
Article in English | MEDLINE | ID: mdl-33833372

ABSTRACT

Chronic stress is a major risk factor in the pathophysiology of many neuropsychiatric disorders. Further, chronic stress conditions can promote neuroinflammation and inflammatory responses in both humans and animal models. Type I interferons (IFN-I) are critical mediators of the inflammatory response in the periphery and responsible for the altered mood and behavior. However, the underlying mechanisms are not well understood. In the present study, we investigated the role of IFN-I signaling in chronic stress-induced changes in neuroinflammation and behavior. Using the chronic restraint stress model, we found that chronic stress induces a significant increase in serum IFNß levels in mice, and systemic blockade of IFN-I signaling attenuated chronic stress-induced infiltration of macrophages into prefrontal cortex and behavioral abnormalities. Furthermore, complement component 3 (C3) mediates systemic IFNß-induced changes in neuroinflammation and behavior. Also, we found significant increases in the mRNA expression levels of IFN-I stimulated genes in the prefrontal cortex of depressed suicide subjects and significant correlation with C3 and inflammatory markers. Together, these findings from animal and human postmortem brain studies identify a crucial role of C3 in IFN-I-mediated changes in neuroinflammation and behavior under chronic stress conditions.


Subject(s)
Complement C3 , Interferon Type I , Neuroinflammatory Diseases , Stress, Psychological , Animals , Mice , Mice, Inbred C57BL , Neuroinflammatory Diseases/immunology
7.
Metab Brain Dis ; 37(6): 1687-1696, 2022 08.
Article in English | MEDLINE | ID: mdl-33881722

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative diseases after Alzheimer's disease (AD), afflicting adults above the age of sixty irrespective of gender, race, ethnicity, and social status. PD is characterized by motor dysfunctions, displaying resting tremor, rigidity, bradykinesia, and postural imbalance. Non-motor symptoms, including rapid eye movement (REM) behavior disorder, constipation, and loss of sense of smell, typically occur many years before the appearance of the PD motor symptoms that lead to a diagnosis. The loss of dopaminergic neurons in the substantia nigra, which leads to the motor symptoms seen in PD, is associated with the deposition of aggregated, misfolded α-Synuclein (α-Syn, SNCA) proteins forming Lewy Bodies. Additionally, dysregulation of miRNA (a short form of mRNA) may contribute to the developing pathophysiology in PD and other diseases such as cancer. Overexpression of α-Syn and miRNA in human samples has been found in PD, AD, and dementia. Therefore, evaluating these molecules in urine, present either in the free form or in association with extracellular vesicles of biological fluids, may lead to early biomarkers for clinical diagnosis. Collection of urine is non-invasive and thus beneficial, particularly in geriatric populations, for biomarker analysis. Considering the expression and function of α-Syn and miRNA, we predict that they can be used as early biomarkers in the diagnosis and prognosis of neurodegenerative diseases.


Subject(s)
Alzheimer Disease , MicroRNAs , Parkinson Disease , Aged , Biomarkers , Humans , MicroRNAs/genetics , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/urine
8.
Adv Skin Wound Care ; 35(8): 447-453, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35588193

ABSTRACT

BACKGROUND: Although wound management is a major component of all domains of healthcare, conventional therapeutics have numerous limitations. The endocannabinoid system of the skin, one of the major endogenous systems, has recently been connected to wound healing. Cannabinoids and their interactions with the endogenous chemical signaling system may be a promising therapeutic option because they address some of the fundamental pathways for physiologic derangement that underpin chronic integumentary wounds. RECENT ADVANCES: The therapeutic applications of cannabinoids are increasing because of their legalization and resulting market expansion. Recently, their immunosuppressive and anti-inflammatory properties have been explored for the treatment of wounds that are not effectively managed by conventional medicines. CRITICAL ISSUES: Failure to manage wounds effectively is associated with reduced quality of life, disability, mortality, and increased healthcare expenditures. Therapeutic options that can manage wounds effectively and efficiently are needed. In this review, the authors summarize recent advances on the use of cannabinoids to treat skin disorders with an emphasis on wound management. FUTURE DIRECTIONS: Effective wound management requires medicines with good therapeutic outcomes and minimal adverse effects. Despite the promising results of cannabinoids in wound management, further controlled clinical studies are required to establish the definitive role of these compounds in the pathophysiology of wounds and their usefulness in the clinical setting.


Subject(s)
Cannabinoids , Negative-Pressure Wound Therapy , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Negative-Pressure Wound Therapy/methods , Quality of Life , Skin , Wound Healing
9.
J Cell Mol Med ; 25(1): 333-344, 2021 01.
Article in English | MEDLINE | ID: mdl-33314684

ABSTRACT

Simvastatin (SMV) could increase tooth anchorage during orthodontic tooth movement (OTM). However, previous studies on its bone-specific anabolic and anti-inflammation properties were based on static in vitro and in vivo conditions. AMPK is a stress-activated kinase that protects tissue against serious damage from overloading inflammation. Rat periodontal ligament cells (PDLCs) were subjected to a serial of SMV concentrations to investigate the optimization that promoted osteogenic differentiation. The PDLCs in static and/or tensile culturing conditions then received the proper concentration SMV. Related factors expression was measured by the protein array, real-time PCR and Western blot. The 0.05UM SMV triggered osteogenic differentiation of PDLCs. The inhibition of AMPK activation through a pharmacological approach (Compound C) caused dramatic decrease in osteogenic/angiogenic gene expression and significant increase in inflammatory NF-κB phosphorylation. In contrast, pharmacological activation of AMPK by AICAR significantly inhibited inflammatory factors expression and activated ERK1/2, P38 MAPK phosphorylation. Moreover, AMPK activation induced by SMV delivery significantly attenuated the osteoclastogenesis and decreased the expression of pro-inflammatory TNF-α and NF-κB in a rodent model of OTM. The current studies suggested that SMV could intrigue intrinsic activation of AMPK in PDLCs that promote attenuate the inflammation which occurred under tensile irritation through AMPK/MAPK/NF-kB Inhibition.


Subject(s)
AMP-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Simvastatin/therapeutic use , AMP-Activated Protein Kinases/genetics , Animals , Blotting, Western , Cell Differentiation/genetics , Cell Differentiation/physiology , Humans , NF-kappa B/genetics , Osteogenesis/genetics , Osteogenesis/physiology , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Stress, Mechanical , X-Ray Microtomography
10.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572986

ABSTRACT

About 70% of stroke victims present with comorbid diseases such as diabetes and hypertension. The integration of comorbidities in pre-clinical experimental design is important in understanding the mechanisms involved in the development of stroke injury and recovery. We recently showed that administration of compound C21, an angiotensin II type 2 receptor agonist, at day 3 post-stroke improved sensorimotor outcomes by lowering neuroinflammation in diabetic male animals. In the current study, we hypothesized that a delayed administration of C21 would also lower chronic inflammation post-stroke in diabetic female animals. Young female diabetic rats were subjected to 1 h of middle cerebral artery occlusion (MCAO). Three days post-stroke, rats were administered C21 or vehicle in drinking water at a dose of 0.12 mg/kg/day for 4 weeks. The impact of C21 on microglial polarization was analyzed by flow cytometry in vivo and in vitro. Compound 21 treatment improved fine motor skills after MCAO through modulation of the microglia/macrophage inflammatory properties. In addition, C21 increased M2 polarization and reduced the M1:M2 ratio in vitro. In conclusion, delayed administration of C21 downregulates post-stroke inflammation in female diabetic animals. C21 may be a useful therapeutic option to lower neuro-inflammation and improve the post-stroke recovery in diabetes.


Subject(s)
Diabetes Mellitus, Experimental/complications , Microglia/drug effects , Neuroprotective Agents/therapeutic use , Receptor, Angiotensin, Type 2/agonists , Stroke/complications , Stroke/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Line , Cognition/drug effects , Diabetes Mellitus, Experimental/physiopathology , Female , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/physiopathology , Mice , Microglia/pathology , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar , Receptor, Angiotensin, Type 2/metabolism , Stroke/physiopathology
11.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008770

ABSTRACT

Glomerular endothelial injury and effectiveness of glomerular endothelial repair play a crucial role in the progression of glomerulonephritis. Although the potent immune suppressive everolimus is increasingly used in renal transplant patients, adverse effects of its chronic use have been reported clinically in human glomerulonephritis and experimental renal disease. Recent studies suggest that progenitor stem cells could enhance glomerular endothelial repair with minimal adverse effects. Increasing evidence supports the notion that stem cell therapy and regenerative medicine can be effectively used in pathological conditions within the predictive, preventive and personalized medicine (PPPM) paradigm. In this study, using an experimental model of glomerulonephritis, we tested whether bone marrow-derived stem cells (BMDSCs) could provide better effect over everolimus in attenuating glomerular injury and improving the repair process in a rat model of glomerulonephritis. Anti-Thy1 glomerulonephritis was induced in male Sprague Dawley rats by injection of an antibody against Thy1, which is mainly expressed on glomerular mesangial cells. Additional groups of rats were treated with the immunosuppressant everolimus daily after the injection of anti-Thy1 or injected with single bolus dose of BMDSCs after one week of injection of anti-Thy1 (n = 6-8). Nine days after injection of anti-Thy1, glomerular albumin permeability and albuminuria were significantly increased when compared to control group (p < 0.05). Compared to BMDSCs, everolimus was significantly effective in attenuating glomerular injury, nephrinuria and podocalyxin excretion levels as well as in reducing inflammatory responses and apoptosis. Our findings suggest that bolus injection of BMDSCs fails to improve glomerular injury whereas everolimus slows the progression of glomerular injury in Anti-Thy-1 induced glomerulonephritis. Thus, everolimus could be used at the early stage of glomerulonephritis, suggesting potential implications of PPPM in the treatment of progressive renal injury.


Subject(s)
Bone Marrow Cells/cytology , Everolimus/pharmacology , Kidney Glomerulus/injuries , Kidney Glomerulus/pathology , Stem Cell Transplantation , Stem Cells/cytology , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Disease Models, Animal , Kidney Glomerulus/drug effects , Male , Membrane Proteins/metabolism , Necrosis , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Thiobarbituric Acid Reactive Substances/metabolism
12.
J Cell Mol Med ; 24(21): 12869-12872, 2020 11.
Article in English | MEDLINE | ID: mdl-33058425

ABSTRACT

Considering lack of target-specific antiviral treatment and vaccination for COVID-19, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve COVID-19-infected patient outcomes. In a follow-up study to our recent findings indicating the potential of Cannabidiol (CBD) in the treatment of acute respiratory distress syndrome (ARDS), here we show for the first time that CBD may ameliorate the symptoms of ARDS through up-regulation of apelin, a peptide with significant role in the central and peripheral regulation of immunity, CNS, metabolic and cardiovascular system. By administering intranasal Poly (I:C), a synthetic viral dsRNA, while we were able to mimic the symptoms of ARDS in a murine model, interestingly, there was a significant decrease in the expression of apelin in both blood and lung tissues. CBD treatment was able to reverse the symptoms of ARDS towards a normal level. Importantly, CBD treatment increased the apelin expression significantly, suggesting a potential crosstalk between apelinergic system and CBD may be the therapeutic target in the treatment of inflammatory diseases such as COVID-19 and many other pathologic conditions.


Subject(s)
Apelin/metabolism , Cannabidiol/pharmacology , Respiratory Distress Syndrome/drug therapy , Administration, Intranasal , Animals , Lung/drug effects , Lung/pathology , Male , Mice, Inbred C57BL , Poly I-C/toxicity , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology
13.
Am J Physiol Renal Physiol ; 319(3): F359-F365, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32686523

ABSTRACT

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that induces nitric oxide (NO) production. IL-10 supplementation has been previously shown to lower blood pressure (BP) in male hypertensive mice, but the effect of exogenous IL-10 in hypertensive female rodents has not been studied. For the present study, we hypothesized that chronic infusion of IL-10 in hypertensive rats would lower BP concomitant with an increase in renal NO synthase (NOS) activity. Male and female spontaneously hypertensive rats (SHRs; 12 wk old) were randomized to receive IL-10 infusion by subcutaneous minipump (3.5 µg·kg-1·day-1) or serve as sham controls (n = 4-6 rats per treatment per sex). BP was measured by tail cuff before and after 2 wk of treatment. Renal T cells and IL-10 were measured by flow cytometry, and NOS activity was determined by conversion of radiolabeled arginine to radiolabeled citrulline. Female SHRs had greater IL-10+ renal cells than male SHRs and greater expression of the IL-10 receptor at baseline. BP did not change in female SHRs treated with IL-10, but BP significantly decreased following IL-10 infusion in male SHRs. Contrary to our hypothesis, NOS enzymatic activity decreased with IL-10 treatment in the renal inner medulla and cortex of both sexes. Renal regulatory T cells also decreased in both sexes after IL-10 treatment. In conclusion, despite male SHRs having less IL-10 and IL-10 receptor expression in the kidney compared with female SHRs, exogenous IL-10 selectively decreased BP only in male SHRs. Furthermore, our data suggest that exogenous IL-10-induced decreases in BP in male SHRs are not dependent on upregulating renal NOS activity.


Subject(s)
Blood Pressure/drug effects , Interleukin-10/pharmacology , Animals , Female , Gene Expression Regulation/drug effects , Inflammation/metabolism , Infusion Pumps , Infusions, Subcutaneous , Interleukin-10/administration & dosage , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Male , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Random Allocation , Rats , Rats, Inbred SHR , Receptors, Interleukin-10/genetics , Receptors, Interleukin-10/metabolism , Sex Factors , T-Lymphocytes/cytology
14.
Br J Cancer ; 123(7): 1078-1088, 2020 09.
Article in English | MEDLINE | ID: mdl-32641864

ABSTRACT

BACKGROUND: EPS8 is a scaffolding protein that regulates proliferation, actin dynamics and receptor trafficking. Its expression is increased in cancer, enhancing mitogenesis, migration and tumorigenesis. Src phosphorylates EPS8 at four tyrosine residues, although the function is unknown. Here we investigated the pro-oncogenic role of EPS8 tyrosine phosphorylation at Src target sites in HNSCC. METHODS: Plasmids expressing EPS8 Src-mediated phosphorylation site mutants (Y485F, Y525F, Y602F, Y774F and all four combined [FFFF]) were expressed in cells containing a normal endogenous level of EPS8. In addition, cells were treated with dasatinib to inhibit Src activity. EPS8 downstream targets were evaluated by western blotting. Wound closure, proliferation, immunofluorescence and tumorgenicity assays were used to investigate the impact of phenylalanine mutations on EPS8 biological functions. RESULTS: FOXM1, AURKA, and AURKB were decreased in cells expressing FFFF- and Y602F-EPS8 mutants, while cells harbouring the Y485F-, Y525F- and Y774F-EPS8 mutants showed no differences compared to controls. Consistent with this, dasatinib decreased the expression of EPS8 targets. Moreover, Y602F- and FFFF-EPS8 mutants reduced mitogenesis and motility. Strikingly though, FFFF- or Y602F-EPS8 mutants actually promoted tumorigenicity compared with control cells. CONCLUSIONS: Phosphorylation of EPS8 at Y602 is crucial for signalling to the cell cycle and may provide insight to explain reduced efficacy of dasatinib treatment.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Carcinogenesis , src-Family Kinases/physiology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Dasatinib/pharmacology , Humans , Phosphorylation , Signal Transduction/physiology , Vimentin/analysis
15.
J Neuroinflammation ; 17(1): 286, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32998763

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic is an unprecedented worldwide health crisis. COVID-19 is caused by SARS-CoV-2, a highly infectious pathogen that is genetically similar to SARS-CoV. Similar to other recent coronavirus outbreaks, including SARS and MERS, SARS-CoV-2 infected patients typically present with fever, dry cough, fatigue, and lower respiratory system dysfunction, including high rates of pneumonia and acute respiratory distress syndrome (ARDS); however, a rapidly accumulating set of clinical studies revealed atypical symptoms of COVID-19 that involve neurological signs, including headaches, anosmia, nausea, dysgeusia, damage to respiratory centers, and cerebral infarction. These unexpected findings may provide important clues regarding the pathological sequela of SARS-CoV-2 infection. Moreover, no efficacious therapies or vaccines are currently available, complicating the clinical management of COVID-19 patients and emphasizing the public health need for controlled, hypothesis-driven experimental studies to provide a framework for therapeutic development. In this mini-review, we summarize the current body of literature regarding the central nervous system (CNS) effects of SARS-CoV-2 and discuss several potential targets for therapeutic development to reduce neurological consequences in COVID-19 patients.


Subject(s)
Coronavirus Infections/complications , Nervous System Diseases/virology , Pneumonia, Viral/complications , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2
16.
J Immunol ; 200(10): 3568-3586, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29661827

ABSTRACT

We tested the hypothesis that oral NaHCO3 intake stimulates splenic anti-inflammatory pathways. Following oral NaHCO3 loading, macrophage polarization was shifted from predominantly M1 (inflammatory) to M2 (regulatory) phenotypes, and FOXP3+CD4+ T-lymphocytes increased in the spleen, blood, and kidneys of rats. Similar anti-inflammatory changes in macrophage polarization were observed in the blood of human subjects following NaHCO3 ingestion. Surprisingly, we found that gentle manipulation to visualize the spleen at midline during surgical laparotomy (sham splenectomy) was sufficient to abolish the response in rats and resulted in hypertrophy/hyperplasia of the capsular mesothelial cells. Thin collagenous connections lined by mesothelial cells were found to connect to the capsular mesothelium. Mesothelial cells in these connections stained positive for the pan-neuronal marker PGP9.5 and acetylcholine esterase and contained many ultrastructural elements, which visually resembled neuronal structures. Both disruption of the fragile mesothelial connections or transection of the vagal nerves resulted in the loss of capsular mesothelial acetylcholine esterase staining and reduced splenic mass. Our data indicate that oral NaHCO3 activates a splenic anti-inflammatory pathway and provides evidence that the signals that mediate this response are transmitted to the spleen via a novel neuronal-like function of mesothelial cells.


Subject(s)
Acetylcholine/metabolism , Anti-Inflammatory Agents/pharmacology , Cholinergic Agents/pharmacology , Epithelium/drug effects , Sodium Bicarbonate/pharmacology , Spleen/drug effects , Adult , Animals , Biomarkers/metabolism , Epithelium/metabolism , Female , Humans , Macrophages/drug effects , Macrophages/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Spleen/metabolism , Vagus Nerve/drug effects , Vagus Nerve/metabolism
17.
Med J Islam Repub Iran ; 34: 120, 2020.
Article in English | MEDLINE | ID: mdl-33316002

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is caused by a new severe acute respiratory syndrome Coronavirus. COVID-19 patients are at risk for acute respiratory distress syndrome and death from respiratory failure. Methods: In this study the complete genome of the SARS-CoV-2 reference sequence, geologically isolated types, and Coronavirus related to human diseases were compared by the Molecular Phylogenetic Maximum Likelihood method. The secondary and tertiary structures of the main protease of SARS-CoV were defined as the most similar viruses to SARS-CoV-2, aligned with chimera software. Therefore, considering ineffective antiviral medications used for SARS-CoV and the importance of preventing acute respiratory distress syndrome as the main cause of mortality, 2 strategies were adopted to acquire the most effective drug combination. Results: The results of phylogenic analysis showed that SARS-CoV is the most similar virus to SARS-CoV-2. The secondary structure and superimposing of tertiary structure did not show a significant difference between SARS and SARS-CoV-2 3C-like main protease and the root means square deviation between Cα atoms did not support the difference between the 2 protein structures. Thus, these 2 mechanisms were fostered in accordance with the correlation between acute respiratory distress syndrome-related Coronavirus, angiotensin-converting enzyme 2 on one side and the possible treatments for reducing the respiratory side effects on the other. The analysis of renin-angiotensin system as well as the tested drugs applied to acute respiratory distress syndrome cases, indicated that angiotensin II receptor blockers, angiotensin-converting enzyme inhibitors, and C21 as nonpeptide agonist might possess a promising modality of treatment for acute respiratory distress syndrome. Furthermore, implementing recombinant human ACE2 as a competitive receptor might be an effective way to trap and chelate the SARS-CoV-2 particles. Conclusion: The data suggest that combination therapy of angiotensin II receptor blockers and C21 could be a potential pharmacologic regimen to control and reduce acute respiratory distress syndrome. Moreover, rhACE2 can be recommended as an effective protective antiviral therapy in the treatment of COVID-19 and its complications.

18.
J Cell Biochem ; 120(7): 11033-11043, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30714208

ABSTRACT

Family with sequence similarity 83 member H (FAM83H) protein-coding geneplay an essential role in the structural organization, calcification of developing enamel, and keratin cytoskeleton disassembly by recruiting Casein kinase 1 alpha (CSNK1A1) to keratin filaments. In this study, we have applied CRISPR Cas9 nickase (D10A) to knockout (KO) the Fam83h gene in NMRI outbred mice. We generated homozygous Fam83h KO mice ( Fam83h Ko/Ko ) through a premature termination codon, which was validated by Sanger sequencing in F0 generation. Next, we also bred the FAM83H KO for two generations. Reverse-transcription polymerase chain reaction and Western blot analysis approved the Fam83h KO mice. The Fam83h KO mice had evidence of normal morphology at the cervical loops, secretory and maturation stages, and mandibular molars. In comparison with the normal wild-type mice ( Fam83h W/W ), the F2 homozygous KO ( Fam83h Ko/Ko ) had sparse, scruffy coats with small body size and decreased general activity. Also, they had the natural reproductive ability and natural lifespan. In addition, delay in opening the eyes and dry eyes among infant mice were seen. The F1 heterozygous mice looked comparable to the normal wild-type mice ( Fam83h W/W ), which showed autosomal recessive inheritance of these phenotypes. The KO of FAM83H had controversial effects on the development of teeth and the formation of enamel. The phenotype defect in dental development and the enamel formation were seen in three mice among four generations. It can be concluded that null FAM83H in outbred mice not only showed the reported phenotypes in null inbred mouse but also showed normal lifespan and reproductive ability; dental deficiency in three homozygous mice; and the symptoms that were similar to the symptoms of dry eye syndrome and curly coat dog syndrome in all four evaluated KO generations.

19.
Immunity ; 33(6): 942-54, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21145762

ABSTRACT

Foxp3(+) regulatory T (Treg) cells can undergo reprogramming into a phenotype expressing proinflammatory cytokines. However, the biologic significance of this conversion remains unclear. We show that large numbers of Treg cells undergo rapid reprogramming into activated T helper cells after vaccination with antigen plus Toll-like receptor 9 (TLR-9) ligand. Helper activity from converted Treg cells proved essential during initial priming of CD8(+) T cells to a new cross-presented antigen. Help from Treg cells was dependent on CD40L, and (unlike help from conventional non-Treg CD4(+) cells) did not require preactivation or prior exposure to antigen. In hosts with established tumors, Treg cell reprogramming was suppressed by tumor-induced indoleamine 2,3-dioxygenase (IDO) and vaccination failed because of lack of help. Treg cell reprogramming, vaccine efficacy, and antitumor CD8(+) T cell responses were restored by pharmacologic inhibition of IDO. Reprogrammed Treg cells can thus participate as previously unrecognized drivers of certain early CD8(+) T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cross-Priming , Melanoma, Experimental/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/metabolism , Adoptive Transfer , Animals , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Transdifferentiation/drug effects , Cells, Cultured , Cross-Priming/drug effects , Forkhead Transcription Factors/biosynthesis , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Lymphocyte Activation/drug effects , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred Strains , Oligodeoxyribonucleotides/administration & dosage , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Toll-Like Receptor 9/immunology , Tryptophan/analogs & derivatives , Tryptophan/pharmacology
20.
Pharmacol Res ; 141: 236-248, 2019 03.
Article in English | MEDLINE | ID: mdl-30616018

ABSTRACT

Much research now indicates that vagal nerve stimulation results in a systemic reduction in inflammatory cytokine production and an increase in anti-inflammatory cell populations that originates from the spleen. Termed the 'cholinergic anti-inflammatory pathway', therapeutic activation of this innate physiological response holds enormous promise for the treatment of inflammatory disease. Much controversy remains however, regarding the underlying physiological pathways mediating this response. This controversy is anchored in the fact that the vagal nerve itself does not innervate the spleen. Recent research from our own laboratory indicating that oral intake of sodium bicarbonate stimulates splenic anti-inflammatory pathways, and that this effect may require transmission of signals to the spleen through the mesothelium, provide new insight into the physiological pathways mediating the cholinergic anti-inflammatory pathway. In this review, we examine proposed models of the cholinergic anti-inflammatory pathway and attempt to frame our recent results in relation to these hypotheses. Following this discussion, we then provide an alternative model of the cholinergic anti-inflammatory pathway which is consistent both with our recent findings and the published literature. We then discuss experimental approaches that may be useful to delineate these hypotheses. We believe the outcome of these experiments will be critical in identifying the most appropriate methods to harness the therapeutic potential of the cholinergic anti-inflammatory pathway for the treatment of disease and may also shed light on the etiology of other pathologies, such as idiopathic fibrosis.


Subject(s)
Epithelium/physiology , Inflammation/physiopathology , Neuroimmunomodulation/physiology , Acetylcholine/physiology , Animals , Humans , Kidney/physiology , Spleen/innervation , T-Lymphocytes/physiology , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL