Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Exp Biol ; 227(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39045755

ABSTRACT

Many bones experience bending, placing one side in net compression and the other in net tension. Because bone mechanical properties are relatively reduced in tension compared with compression, adaptations are needed to reduce fracture risk. Several toughening mechanisms exist in bone, yet little is known of the influences of secondary osteon collagen/lamellar 'morphotypes' and potential interplay with intermolecular collagen cross-links (CCLs) in prevalent/predominant tension- and compression-loaded regions. Paired third metacarpals (MC3s) from 10 adult horses were prepared for mechanical testing. From one MC3/pair, 5 mm cubes were tested in compression at several mid-shaft locations. From contralateral bones, dumbbell-shaped specimens were tested in tension. Hence, habitual/natural tension- and compression-loaded regions were tested in both modes. Data included: elastic modulus, yield and ultimate strength, and energy absorption (toughness). Fragments of tested specimens were examined for predominant collagen fiber orientation (CFO; representing osteonal and non-osteonal bone), osteon morphotype score (MTS, representing osteonal CFO), mineralization, porosity and other histological characteristics. As a consequence of insufficient material from tension-tested specimens, CCLs were only examined in compression-tested specimens (HP, hydroxylysylpyridinoline; LP, lysylpyridinoline; PE, pentosidine). Among CCLs, only LP and HP/LP correlated significantly with mechanical parameters: LP with energy absorption, HP/LP with elastic modulus (both r=0.4). HP/LP showed a trend with energy absorption (r=-0.3, P=0.08). HP/LP more strongly correlated with osteon density and mineralization than CFO or MTS. Predominant CFO more strongly correlated with energy absorption than MTS in both testing modes. In general, CFO was found to be relatively prominent in affecting regional toughness in these equine MC3s in compression and tension.


Subject(s)
Collagen , Haversian System , Metacarpal Bones , Animals , Horses/physiology , Collagen/chemistry , Collagen/metabolism , Metacarpal Bones/physiology , Metacarpal Bones/anatomy & histology , Metacarpal Bones/chemistry , Haversian System/physiology , Biomechanical Phenomena , Compressive Strength , Stress, Mechanical , Elastic Modulus
2.
J Biomech ; 166: 112054, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38513398

ABSTRACT

The objective of this study was to define targeted reaching performance without visual information for transhumeral (TH) prosthesis users, establishing baseline information about extended physiological proprioception (EPP) in this population. Subjects completed a seated proprioceptive targeting task under simultaneous motion capture, using their prosthesis and intact limb. Eight male subjects, median age of 58 years (range 29-77 years), were selected from an ongoing screening study to participate. Five subjects had a left-side TH amputation, and three a right-side TH amputation. Median time since amputation was 9 years (range 3-54 years). Four subjects used a body-powered prosthetic hook, three a myoelectric hand, and one a myoelectric hook. The outcome measures were precision and accuracy, motion of the targeting hand, and joint angular displacement. Subjects demonstrated better precision when targeting with their intact limb compared to targeting with their prosthesis, 1.9 cm2 (0.8-3.0) v. 7.1 cm2 (1.3-12.8), respectively, p = 0.008. Subjects achieved a more direct reach path ratio when targeting with the intact limb compared to with the prosthesis, 1.2 (1.1-1.3) v. 1.3 (1.3-1.4), respectively, p = 0.039 The acceleration, deceleration, and corrective phase durations were consistent between conditions. Trunk angular displacement increased in flexion, lateral flexion, and axial rotation while shoulder flexion decreased when subjects targeted with their prosthesis compared to the intact limb. The differences in targeting precision, reach patio ratio, and joint angular displacements while completing the targeting task indicate diminished EPP. These findings establish baseline information about EPP in TH prosthesis users for comparison as novel prosthesis suspension systems become more available to be tested.


Subject(s)
Artificial Limbs , Upper Extremity , Humans , Male , Adult , Middle Aged , Aged , Prosthesis Implantation , Amputation, Surgical , Proprioception , Prosthesis Design
3.
Gait Posture ; 112: 59-66, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744022

ABSTRACT

BACKGROUND: Transhumeral (TH) limb loss leads to loss of body mass and reduced shoulder range of motion. Despite most owning a prosthesis, prosthesis abandonment is common. The consequence of TH limb loss and prosthesis use and disuse during gait may be compensation in the upper body, contributing to back pain or injury. Understanding the impact of not wearing a TH prosthesis on upper body asymmetries and spatial-temporal aspects of gait will inform how TH prosthesis use and disuse affects the body. RESEARCH QUESTION: Does TH limb loss alter upper body asymmetries and spatial-temporal parameters during gait when wearing and not wearing a prosthesis compared to able-bodied controls? METHODS: Eight male TH limb loss participants and eight male control participants completed three gait trials at self-selected speeds. The TH limb loss group performed trials with and without their prosthesis. Arm swing, trunk angular displacement, trunk-pelvis moment, and spatial-temporal aspects were compared using non-parametric statistical analyses. RESULTS: Both TH walking conditions showed greater arm swing in the intact limb compared to the residual (p≤0.001), resulting in increased asymmetry compared to the control group (p≤0.001). Without the prosthesis, there was less trunk flexion and lateral flexion compared to the control group (p≤0.001). Maximum moments between the trunk and pelvis were higher in the TH group than the control group (p≤0.05). Spatial-temporal parameters of gait did not differ between the control group and either TH limb loss condition. SIGNIFICANCE: Prosthesis use affects upper body kinematics and kinetics, but does not significantly impact spatial-temporal aspects of gait, suggesting these are compensatory actions. Wearing a prosthesis helps achieve more normative upper body kinematics and kinetics than not wearing a prosthesis, which may help limit back pain. These findings emphasize the importance of encouraging at least passive use of prostheses for individuals with TH limb loss.


Subject(s)
Artificial Limbs , Gait , Humans , Male , Biomechanical Phenomena , Gait/physiology , Adult , Range of Motion, Articular/physiology , Humerus/physiology , Middle Aged , Amputees/rehabilitation , Upper Extremity/physiology , Case-Control Studies
SELECTION OF CITATIONS
SEARCH DETAIL