Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 603
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Physiol Rev ; 98(1): 505-553, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29351514

ABSTRACT

The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.


Subject(s)
Angiotensin I/metabolism , Brain/metabolism , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System , Angiotensin-Converting Enzyme 2 , Animals , Humans , Proto-Oncogene Mas , Signal Transduction
3.
Blood ; 141(17): 2127-2140, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36758212

ABSTRACT

JAK 2-V617F mutation causes myeloproliferative neoplasms (MPNs) that can manifest as polycythemia vera (PV), essential thrombocythemia (ET), or primary myelofibrosis. At diagnosis, patients with PV already exhibited iron deficiency, whereas patients with ET had normal iron stores. We examined the influence of iron availability on MPN phenotype in mice expressing JAK2-V617F and in mice expressing JAK2 with an N542-E543del mutation in exon 12 (E12). At baseline, on a control diet, all JAK2-mutant mouse models with a PV-like phenotype displayed iron deficiency, although E12 mice maintained more iron for augmented erythropoiesis than JAK2-V617F mutant mice. In contrast, JAK2-V617F mutant mice with an ET-like phenotype had normal iron stores comparable with that of wild-type (WT) mice. On a low-iron diet, JAK2-mutant mice and WT controls increased platelet production at the expense of erythrocytes. Mice with a PV phenotype responded to parenteral iron injections by decreasing platelet counts and further increasing hemoglobin and hematocrit, whereas no changes were observed in WT controls. Alterations of iron availability primarily affected the premegakaryocyte-erythrocyte progenitors, which constitute the iron-responsive stage of hematopoiesis in JAK2-mutant mice. The orally administered ferroportin inhibitor vamifeport and the minihepcidin PR73 normalized hematocrit and hemoglobin levels in JAK2-V617F and E12 mutant mouse models of PV, suggesting that ferroportin inhibitors and minihepcidins could be used in the treatment for patients with PV.


Subject(s)
Iron Deficiencies , Myeloproliferative Disorders , Polycythemia Vera , Thrombocythemia, Essential , Mice , Animals , Iron , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/diagnosis , Polycythemia Vera/genetics , Janus Kinase 2/genetics , Thrombocythemia, Essential/genetics , Mutation , Phenotype , Hemoglobins/genetics
4.
FASEB J ; 38(8): e23623, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38656660

ABSTRACT

The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.


Subject(s)
Embryonic Development , alpha Karyopherins , Animals , Female , Mice , alpha Karyopherins/metabolism , alpha Karyopherins/genetics , Embryonic Development/genetics , Fertility/genetics , Mice, Knockout , Maternal Inheritance , Gene Expression Regulation, Developmental , Male , Pregnancy , Nucleoplasmins/metabolism , Nucleoplasmins/genetics , Blastocyst/metabolism
5.
Nature ; 567(7749): 535-539, 2019 03.
Article in English | MEDLINE | ID: mdl-30867594

ABSTRACT

Chemical modifications of histones can mediate diverse DNA-templated processes, including gene transcription1-3. Here we provide evidence for a class of histone post-translational modification, serotonylation of glutamine, which occurs at position 5 (Q5ser) on histone H3 in organisms that produce serotonin (also known as 5-hydroxytryptamine (5-HT)). We demonstrate that tissue transglutaminase 2 can serotonylate histone H3 tri-methylated lysine 4 (H3K4me3)-marked nucleosomes, resulting in the presence of combinatorial H3K4me3Q5ser in vivo. H3K4me3Q5ser displays a ubiquitous pattern of tissue expression in mammals, with enrichment observed in brain and gut, two organ systems responsible for the bulk of 5-HT production. Genome-wide analyses of human serotonergic neurons, developing mouse brain and cultured serotonergic cells indicate that H3K4me3Q5ser nucleosomes are enriched in euchromatin, are sensitive to cellular differentiation and correlate with permissive gene expression, phenomena that are linked to the potentiation of TFIID4-6 interactions with H3K4me3. Cells that ectopically express a H3 mutant that cannot be serotonylated display significantly altered expression of H3K4me3Q5ser-target loci, which leads to deficits in differentiation. Taken together, these data identify a direct role for 5-HT, independent from its contributions to neurotransmission and cellular signalling, in the mediation of permissive gene expression.


Subject(s)
Gene Expression Regulation , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Serotonin/metabolism , Transcription Factor TFIID/metabolism , Animals , Cell Differentiation , Cell Line , Female , GTP-Binding Proteins/metabolism , Glutamine/chemistry , Glutamine/metabolism , Humans , Methylation , Mice , Mice, Inbred C57BL , Protein Binding , Protein Glutamine gamma Glutamyltransferase 2 , Serotonergic Neurons/cytology , Transglutaminases/metabolism
6.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34473250

ABSTRACT

Spermatogenesis is driven by an ordered series of events, which rely on trafficking of specific proteins between nucleus and cytoplasm. The karyopherin α family of proteins mediates movement of specific cargo proteins when bound to karyopherin ß. Karyopherin α genes have distinct expression patterns in mouse testis, implying they may have unique roles during mammalian spermatogenesis. Here, we use a loss-of-function approach to determine specifically the role of Kpna6 in spermatogenesis and male fertility. We show that ablation of Kpna6 in male mice leads to infertility and has multiple cumulative effects on both germ cells and Sertoli cells. Kpna6-deficient mice exhibit impaired Sertoli cell function, including loss of Sertoli cells and a compromised nuclear localization of the androgen receptor. Furthermore, our data demonstrate devastating defects on spermiogenesis, including incomplete sperm maturation and a massive reduction in sperm number, accompanied by disturbed histone-protamine exchange, differential localization of the transcriptional regulator BRWD1 and altered expression of RFX2 target genes. Our work uncovers an essential role of Kpna6 in spermatogenesis and, hence, in male fertility.


Subject(s)
Infertility, Male/metabolism , Spermatogenesis , alpha Karyopherins/genetics , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Infertility, Male/genetics , Loss of Function Mutation , Male , Mice , Mice, Inbred C57BL , Receptors, Androgen/metabolism , Sertoli Cells/metabolism , Spermatogonia/metabolism , alpha Karyopherins/deficiency , alpha Karyopherins/metabolism
7.
Horm Behav ; 163: 105551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678724

ABSTRACT

Alamandine is a peptide hormone belonging to the renin-angiotensin system (RAS). It acts through the Mas-related G-protein coupled receptor type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we hypothesize that a lack of alamandine, through MrgD, could cause the anxiety-like behavior in transgenic rats with low brain angiotensinogen [TGR(ASrAOGEN)680]. Adult male transgenic rats exhibited a significant increase in the latency to feeding time in the novelty suppressed feeding test and a decrease in the percentage of time and entries in the open arms in the elevated plus maze. These effects were reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas and MrgD receptor antagonist, prevented the anxiolytic effects induced by this peptide. However, its effects were not altered by the selective Mas receptor antagonist, A779. In conclusion, our data indicates that alamandine, through MrgD, attenuates anxiety-like behavior in male TGR(ASrAOGEN)680, which reinforces the importance of the counter-regulatory RAS axis as promising target for the treatment of neuropsychiatric disorders.


Subject(s)
Angiotensinogen , Anti-Anxiety Agents , Anxiety , Brain , Rats, Transgenic , Receptors, G-Protein-Coupled , Animals , Male , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Rats , Anxiety/drug therapy , Anxiety/metabolism , Anti-Anxiety Agents/pharmacology , Angiotensinogen/metabolism , Angiotensinogen/genetics , Brain/metabolism , Brain/drug effects , Receptors, Gastrointestinal Hormone/metabolism , Oligopeptides/pharmacology , Nerve Tissue Proteins
8.
Arch Toxicol ; 98(6): 1771-1780, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38668861

ABSTRACT

2-Phenoxyethanol (PhE) is an aromatic glycol ether and is used in a variety of functions and applications, e.g., as preservative in pharmaceuticals, cosmetic and personal care products, as biocide in disinfectants (e.g. human hygiene), or as a solvent in formulations (e.g. coatings, functional fluids). Despite its widespread use, little is yet known on its biotransformation and toxicokinetics in humans. Therefore, a pilot study was conducted with oral administration of PhE (5 mg/kg body weight) to five volunteers. Blood and urine samples were collected and analyzed for PhE and three of its presumed metabolites up to 48 h post-exposure. Additionally, one volunteer was dermally exposed to PhE and monitored until 72 h post-exposure. PhE was rapidly resorbed following both oral and dermal application with tmax-levels in blood of about 1 h and 3 h, respectively. Metabolism of PhE was observed to be rather extensive with phenoxyacetic acid (PhAA) and 4-hydroxyphenoxyacetic acid (4-OH-PhAA) as the main metabolites found in blood and urine following oral and dermal exposure. PhE was excreted rapidly and efficiently via urine mostly in metabolized form: following oral exposure, on average 77% and 12% of the applied dose was excreted within 48 h as PhAA and 4-OH-PhAA, respectively. A similar metabolism pattern was observed following the single dermal exposure experiment. The obtained data on biotransformation and toxicokinetics of PhE in humans provide valuable information on this important chemical and will be highly useful for pharmacokinetic modelling and evaluation of human PhE exposure.


Subject(s)
Biotransformation , Ethylene Glycols , Toxicokinetics , Humans , Administration, Oral , Pilot Projects , Ethylene Glycols/pharmacokinetics , Ethylene Glycols/toxicity , Adult , Male , Female , Administration, Cutaneous , Young Adult
9.
Sensors (Basel) ; 24(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38610347

ABSTRACT

Roller bearings are critical components in various mechanical systems, and the timely detection of potential failures is essential for preventing costly downtimes and avoiding substantial machinery breakdown. This research focuses on finding and verifying a robust method that can detect failures early, without creating false positive failure states. Therefore, this paper introduces a novel algorithm for the early detection of roller bearing failures, particularly tailored to high-precision bearings and automotive test bed systems. The featured method (AFI-Advanced Failure Indicator) utilizes the Fast Fourier Transform (FFT) of wideband accelerometers to calculate the spectral content of vibration signals emitted by roller bearings. By calculating the frequency bands and tracking the movement of these bands within the spectra, the method provides an indicator of the machinery's health, mainly focusing on the early stages of bearing failure. The calculated channel can be used as a trend indicator, enabling the method to identify subtle deviations associated with impending failures. The AFI algorithm incorporates a non-static limit through moving average calculations and volatility analysis methods to determine critical changes in the signal. This thresholding mechanism ensures the algorithm's responsiveness to variations in operating conditions and environmental factors, contributing to its robustness in diverse industrial settings. Further refinement was achieved through an outlier detection filter, which reduces false positives and enhances the algorithm's accuracy in identifying genuine deviations from the normal operational state. To benchmark the developed algorithm, it was compared with three industry-standard algorithms: VRMS calculations per ISO 10813-3, Mean Absolute Value of Extremums (MAVE), and Envelope Frequency Band (EFB). This comparative analysis aimed to evaluate the efficacy of the novel algorithm against the established methods in the field, providing valuable insights into its potential advantages and limitations. In summary, this paper presents an innovative algorithm for the early detection of roller bearing failures, leveraging FFT-based spectral analysis, trend monitoring, adaptive thresholding, and outlier detection. Its ability to confirm the first failure state underscores the algorithm's effectiveness.

10.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338764

ABSTRACT

The kallikrein-kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected.


Subject(s)
Receptor, Bradykinin B2 , Tyrosine 3-Monooxygenase , Mice , Male , Female , Animals , Receptor, Bradykinin B2/genetics , Receptor, Bradykinin B2/metabolism , Tyrosine 3-Monooxygenase/genetics , Bradykinin/pharmacology , Receptor, Bradykinin B1/metabolism , Body Weight , Mice, Knockout
11.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732220

ABSTRACT

Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.


Subject(s)
Decision Making , Serotonin , Tryptophan Hydroxylase , Animals , Rats , Behavior, Animal , Cognition , Gene Knockdown Techniques , Hypothalamus/metabolism , Serotonin/metabolism , Social Behavior , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics
12.
Circulation ; 146(23): 1758-1778, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36259389

ABSTRACT

BACKGROUND: Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, PDE3A mutations could be protective. METHODS: We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying PDE3A mutations were established, differentiated to cardiomyocytes, and analyzed by Ca2+ imaging. We used Förster resonance energy transfer and biochemical assays. RESULTS: We identified a new PDE3A mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB PDE3A mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The ß-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the PDE3A mutations caused adaptive changes of Ca2+ cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. CONCLUSIONS: Although in vascular smooth muscle, PDE3A mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of PDE3A mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.


Subject(s)
Heart Failure , Hypertension , Induced Pluripotent Stem Cells , Humans , Rats , Animals , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , X-Ray Microtomography , Induced Pluripotent Stem Cells/metabolism , Hypertension/complications , Hypertension/genetics , Myocytes, Cardiac/metabolism , Cardiomegaly , RNA
13.
Am J Epidemiol ; 192(11): 1854-1863, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37365831

ABSTRACT

Research suggests that transportation is an important social determinant of health, because the ability to get around is consequential for accessing health care and nutritious food and for making social connections. We used an inductive mixed-methods approach and a quantitative k-means clustering approach to identify 5 categories of transportation insecurity using the validated 16-item Transportation Security Index. The resulting 5-category measure distinguished among respondents with qualitatively different experiences of transportation insecurity. Analyzing data from 2018 that were representative of the US adult population aged 25 years or older, we demonstrated a nonparametric association between transportation insecurity and 2 different health measures (self-rated health and depressive symptoms). There was a threshold relationship between self-rated health and any level of transportation insecurity. High transportation insecurity had a very strong relationship with depressive symptoms. The categorical Transportation Security Index will be useful for clinicians who wish to screen for transportation-related barriers to health care. It will also facilitate research investigating the influence of transportation insecurity on health outcomes and provide the basis for interventions designed to address health disparities.


Subject(s)
Food Supply , Health Services Accessibility , Adult , Humans
14.
Kidney Int ; 104(2): 293-304, 2023 08.
Article in English | MEDLINE | ID: mdl-37105519

ABSTRACT

Chronic kidney disease is one of the leading causes of morbidity and mortality especially among the aged population. A decline in kidney function with ageing comparable to ageing-related processes in human kidneys has also been described in Sprague-Dawley (SD) rats. The renin-angiotensin-system (RAS) plays a pivotal role in the pathophysiology of cardiovascular and kidney disease and is a successful therapeutic target. The discovery of angiotensin-(1-7) (Ang(1-7)), mainly produced by angiotensin-converting enzyme 2 (ACE2), and its receptor MAS offered a new view on the RAS. This ACE2/Ang(1-7)/MAS axis counteracts most deleterious actions of the RAS in the kidney. In order to evaluate if activation of this axis has a protective effect in ageing-induced kidney disease we generated a transgenic rat model (TGR(SM22hACE2)) overexpressing human ACE2 in vascular smooth muscle cells. These animals showed a specific transgene expression pattern and increased ACE2 activity in the kidney. Telemetric recording of cardiovascular parameters and evaluation of kidney function by histology and urine analysis revealed no alterations in blood pressure regulation and basal kidney function in young transgenic rats when compared to young SD rats. However, with ageing, SD rats developed a decline in kidney function characterized by severe albuminuria which was significantly less pronounced in TGR(SM22hACE2) rats. Concomitantly, we detected lower mRNA expression levels of kidney damage markers in aged transgenic animals. Thus, our results indicate that vascular ACE2-overexpression protects the kidney against ageing-induced decline in kidney function, supporting the kidney-protective role of the ACE2/Ang(1-7)/MAS axis.


Subject(s)
Peptidyl-Dipeptidase A , Renal Insufficiency, Chronic , Rats , Animals , Humans , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Rats, Sprague-Dawley , Renin-Angiotensin System , Kidney/metabolism , Peptide Fragments/metabolism , Rats, Transgenic , Renal Insufficiency, Chronic/metabolism , Aging/genetics , Angiotensin I/metabolism , Receptors, G-Protein-Coupled
15.
Clin Sci (Lond) ; 137(16): 1249-1263, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37527493

ABSTRACT

BACKGROUND: An unbalance in the renin-angiotensin (Ang) system (RAS) between the Ang II/AT1 and Ang-(1-7)/Mas axis appears to be involved in preeclampsia (PE), in which a reduction in Ang-(1-7) was observed. Here, we tested whether the reduction in the activity of the Ang-(1-7)/Mas axis could be a contributing factor for the development of PE, using Mas-deficient (Mas-/-) mice. METHODS AND RESULTS: Cardiovascular parameters were evaluated by telemetry before, during pregnancy and 4 days postpartum in 20-week-old Mas-/- and wild-type (WT) female mice. Mas-/- mice presented reduced arterial blood pressure (BP) at baseline (91.3 ± 0.8 in Mas-/- vs. 94.0 ± 0.9 mmHg in WT, Diastolic, P<0.05). However, after the 13th day of gestation, BP in Mas-/- mice started to increase, time-dependently, and at day 19 of pregnancy, these animals presented a higher BP in comparison with WT group (90.5 ± 0.7 in Mas-/- vs. 80.3 ± 3.5 mmHg in WT, Diastolic D19, P<0.0001). Moreover, pregnant Mas-/- mice presented fetal growth restriction, increase in urinary protein excretion as compared with nonpregnant Mas-/-, oliguria, increase in cytokines, endothelial dysfunction and reduced ACE, AT1R, ACE2, ET-1A, and eNOS placental mRNA, similar to some of the clinical manifestations found in the development of PE. CONCLUSIONS: These results show that Mas-deletion produces a PE-like state in FVB/N mice.


Subject(s)
Peptidyl-Dipeptidase A , Pre-Eclampsia , Pregnancy , Female , Mice , Animals , Humans , Peptidyl-Dipeptidase A/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Mas , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Placenta/metabolism , Renin-Angiotensin System , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Angiotensin II/metabolism , Phenotype , Angiotensin I/metabolism , Peptide Fragments/metabolism
16.
Chem Res Toxicol ; 36(11): 1745-1752, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37921539

ABSTRACT

Geraniol is a fragrance with a characteristic rose-like smell, naturally occurring in terpene oil and also chemically synthesized on a large scale. Geraniol is widely used in consumer products such as cosmetics, personal care products, and household cleaners and as an additive in foods. An experimental study in human volunteers was carried out to investigate the metabolism and elimination kinetics of geraniol. Three subjects were orally exposed to geraniol in two different dosages (25 or 250 mg). In each case, one pre-exposure urine sample and all urine voids for 72 h after exposure were collected separately. The geraniol metabolites Hildebrandt acid, geranic acid, 3-hydroxycitronellic acid, and 8-carboxygeraniol were analyzed in every sample after enzymatic hydrolysis and liquid-liquid extraction using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Maximum urinary concentrations of the metabolites were measured between 1 and 5 h after oral dosing, and elimination half-lives were determined to be about 2-4 h. The predominant metabolite found in urine was Hildebrandt acid with 34.4 ± 5.6% of the ingested dose, followed by geranic acid (12.7 ± 5.6%), 3-hydroxycitronellic acid (2.2 ± 0.4%), and 8-carboxygeraniol (0.19 ± 0.09%). In total, the four metabolites determined represent 41.7-55.5% of the ingested dose. Only 8-carboxygeraniol is, however, a specific metabolite, while the other three target analytes are also formed from other terpenes like citral. Within this study, conversion factors were calculated, which allow for a rough estimate of the total geraniol uptake by back-calculation from metabolite concentrations of spot urine samples. Taking the conversion factor for all four metabolites into account, a mean daily uptake of geraniol of 1.43 mg was estimated from 41 urine samples of occupationally nonexposed adults. The metabolites Hildebrandt acid, geranic acid, 3-hydroxycitronellic acid, and 8-carboxygeraniol in urine are suitable biomarkers of exposure for geraniol and can be used for human biomonitoring studies.


Subject(s)
Odorants , Tandem Mass Spectrometry , Adult , Humans , Chromatography, Liquid
17.
Inflamm Res ; 72(10-11): 1957-1963, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37750921

ABSTRACT

Kinins are a set of peptides present in tissues and involved in cardiovascular regulation, inflammation, and pain. Here, we briefly comment on recent key findings on the use of kinins in regenerative medicine.


Subject(s)
Inflammation , Kinins , Humans , Kinins/physiology , Peptides/therapeutic use , Pain , Bradykinin/physiology
18.
Inflamm Res ; 72(8): 1583-1601, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37464053

ABSTRACT

OBJECTIVE AND DESIGN: After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS: To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS: Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS: We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.


Subject(s)
Receptor, Bradykinin B1 , Receptor, Bradykinin B2 , Mice , Animals , Receptor, Bradykinin B2/genetics , Receptor, Bradykinin B1/genetics , Bradykinin/metabolism , Bradykinin/pharmacology , Muscle, Skeletal , Fibrosis , Regeneration , Receptors, Bradykinin
19.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902295

ABSTRACT

The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state.


Subject(s)
Cellular Reprogramming , Pluripotent Stem Cells , Serotonin , Tryptophan Hydroxylase , Animals , Mice , Fibroblasts/metabolism , Serotonin/biosynthesis , Tryptophan/metabolism , Tryptophan Hydroxylase/metabolism
20.
Acta Neuropsychiatr ; 35(1): 27-34, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35979816

ABSTRACT

OBJECTIVES: To evaluate the impact of genetic deletion of receptors of the counterregulatory arms of the renin-angiotensin system in depressive-like behaviours. METHODS: 8-12 weeks-old male mice wild type (WT, C57BL/6J) and mice with genetic deletion of MrgD (MrgD KO) or Mas receptors (Mas KO) were subjected to the Forced Swim Test (FST) and the Tail Suspension Test (TST). Brain-derived neurotrophic factor (BDNF) levels were measured by enzyme-linked immunosorbent assay (ELISA). Blockade of Mas was performed by acute intracerebroventricular (icv) injection of its selective antagonist, A779. RESULTS: No statistical difference in immobility time was observed between MrgD KO and WT male animals subjected to FST and TST. However, acute icv injection of A779 significantly increased the immobility time of MrgD KO male mice subjected to FST and TST, suggesting the involvement of Mas in preventing depressive-like behaviour. Indeed, Mas KO male animals showed increased immobility time in FST and TST, evidencing a depressive-like behaviour in these animals, in addition to a reduction in BDNF levels in the prefrontal cortex and hippocampus. No changes in BDNF levels were observed in MrgD KO male animals. CONCLUSION: Our data showed that Mas plays an important role in the neurobiology of depression probably by modulating BDNF expression. On the contrary, lack of MrgD did not alter depressive-like behaviour, which was supported by the lack of alterations in BDNF levels.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Mice , Male , Animals , Depression/genetics , Depression/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Mice, Inbred C57BL , Hindlimb Suspension , Prefrontal Cortex/metabolism , Hippocampus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL